首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Erythrocyte Ghost Is a Perfect Osmometer   总被引:3,自引:0,他引:3  
The osmotic swelling of intact erythrocytes in hypotonic solutions was measured using microhematocrit tubes, Van Allen tubes, and a calibrated Coulter counter. In agreement with earlier workers the intact cells did not behave as perfect osmometers, the cells swelling less than predicted by the Boyle-van't Hoff law. Erythrocyte ghosts were prepared from fresh intact erythrocytes by one-step hemolysis in 0.25% NaCl at an extremely dilute concentration of cells and the membranes were sealed at 37°. The ghosts were mixed with NaCl solutions of different osmolarities and the MCV (mean cell volume) of the shrunken cells immediately monitored by a calibrated Coulter counter. It was found that the MCV values of the shrunken ghosts were accurately predicted by the Boyle-van't Hoff law. These results indicate that these erythrocyte ghosts behaved as perfect osmometers.  相似文献   

2.
Bone elongation is predominantly driven by the volume expansion of growth plate chondrocytes. This mechanism was initially believed to be "hypertrophy", describing a proportional increase of cell water and organelles. However, morphometrical analysis subsequently assumed the increase to be "swelling", resulting in a disproportionate increase of cell water (osmotically active fraction). Histological approaches were performed on fixed tissue, and for the "swelling" assumption to be valid, the osmotic sensitivity of living cells before and during volume increase should differ. To test this, analysis of images acquired by 2-photon laser scanning microscopy (2PLSM) were used to determine the osmotic sensitivity, and osmotically active/inactive proportions of in situ chondrocytes from 15 living rat growth plates exposed to varying media osmolarities ( approximately 0-580 mOsm). The dimensions of cell volume swelling in hypotonic media were different to the preferential lengthening seen in vivo, confirming the complexity of directional cell volume increase. Boyle-van't Hoff analysis of cell volume over the range of media osmolarity indicated no significant difference (Student's t-test) in the osmotically inactive fraction, 39.5 +/- 2.9% and 47.0 +/- 4.3% (n = 13) for proliferative and hypertrophic zones, respectively, or the sensitivity of volume to changes in media osmolarity (proliferative 15.5 +/- 0.8 and hypertrophic zone 15.5 +/- 1.2%volume . Osm). The osmotic fractions did not change as chondrocytes progress from proliferative to hypertrophic regions of the growth plate. Our data suggest cell volume increase by hypertrophy may play a greater role in cell enlargement than swelling, and should be re-evaluated as a mechanism responsible for growth plate chondrocyte volume increase and hence bone elongation.  相似文献   

3.
Some pathological conditions may affect osmolarity, which can impact cell, tissue, and organ volume. The hypothesis of this study is that changes in osmolarity affect the zero-stress state and mechanical properties of the aorta. To test this hypothesis, a segment of mouse abdominal aorta was cannulated in vivo and mechanically distended by perfusion of physiological salt (NaCl) solutions with graded osmolarities from 145 to 562 mosM. The mechanical (circumferential stress, strain, and elastic modulus) and morphological (wall thickness and wall area) parameters in the loaded state were determined. To determine the osmolarity-induced changes of zero-stress state, the opening angle was observed by immersion of the sectors of mouse, rat, and pig thoracic aorta in NaCl solution with different osmolarities. Wall volume and tissue water content of the rings were also recorded at different osmolarities. Our results show that acute aortic swelling due to low osmolarity leads to an increase in wall thickness and area, a change in the stress-strain relationship, and an increase in the elastic modulus (stiffness) in mouse aorta. The opening angle, wall volume, and water content decreased significantly with increase in osmolarity. These findings suggest that acute aortic swelling and shrinking result in immediate mechanical changes in the aorta. Osmotic pressure-induced changes in the zero-stress state may serve to regulate mechanical homeostasis.  相似文献   

4.
The cell water content determines the cell volume, which in turn controls numerous cellular functions. The mean volume of rat glioma cells was electronically measured under isotonic and anisotonic conditions. Two types of isotonic solutions were used containing either high or low concentrations of NaCl, KCl or N-methylglucamineCl. In low salt solutions, osmolarity was maintained constant by the addition of sucrose or mannitol. Anisotonicity was induced by changing the concentration of electrolytes. As expected, the cell volume increased when the concentration of electrolytes was decreased from a high (165 mM) monovalent cation concentration. In contrast, the cell volume decreased when the concentration of electrolytes was decreased from a low (85 mM) monovalent cation concentration. Reciprocally and unexpectedly, the cell volume increased during a hyperosmotic challenge when the initial cation concentration was low, whereas it decreased when the initial cation concentration was high. These opposite volume changes observed during similar anisotonic challenges but starting from different electrolyte concentrations provide the first evidence that H2O is not only passively transported (downhill) through aquaporins but also follows ion fluxes (uphill).  相似文献   

5.
Cells subjected to the events occurring before, during, and after freezing and thawing are exposed to major changes in the osmotic pressure of the surrounding medium; i.e., the osmolalities can exceed 30. An important question in understanding the mechanisms of injury is whether cells respond as ideal osmometers to these strongly anisotonic solutions. Mouse and bovine embryos from eight-cell to blastocyst stage were used to investigate the question. They were found to behave as ideal osmometers at room temperature over a wide range of tonicities; i.e., from four times isotonic to almost 1/3 times isotonic, ideality being defined by a Boyle-van't Hoff equation. Embryo volumes increased from 40 to 200% of isotonic over this range and survivals of mouse embryos were unaffected. However, outside this range the membrane apparently becomes leaky and the survival of mouse embryos drops sharply. Osmolalities rise to high values during freezing and the paper develops the thermodynamic equations to show how computed cell volumes as a function of subzero temperature can be translated into the Boyle-van't Hoff format of cell volume as a function of the reciprocal of osmolality.  相似文献   

6.
Cells subjected to the events occurring before, during, and after freezing and thawing are exposed to major changes in the osmotic pressure of the surrounding medium; i.e., the osmolalities can exceed 30. An important question in understanding the mechanisms of injury is whether cells respond as ideal osmometers to these strongly anisotonic solutions. Mouse and bovine embryos from eight-cell to blastocyst stage were used to investigate the question. They were found to behave as ideal osmometers at room temperature over a wide range of tonicities; i.e., from four times isotonic to almost 1/3 times isotonic, ideality being defined by a Boyle-van't Hoff equation. Embryo volumes increased from 40 to 200% of isotonic over this range and survivals of mouse embryos were unaffected. However, outside this range the membrane apparently becomes leaky and the survival of mouse embryos drops sharply. Osmolalities rise to high values during freezing and the paper develops the thermodynamic equations to show how computed cell volumes as a function of subzero temperature can be translated into the Boyle-van't Hoff format of cell volume as a function of the reciprocal of osmolality.  相似文献   

7.
Natural-abundance 13C-nuclear magnetic resonance spectroscopy has shown glycerol to be the major osmotically significant low-molecular-weight solute in exponentially growing, salt-stressed cells of the yeasts Saccharomyces cerevisiae, Zygosaccharomyces rouxii, and Debaromyces hansenii. Measurement of the intracellular nonosmotic volume (i.e., the fraction of the cell that is osmotically unresponsive) by using the Boyle-van't Hoff relationship (for nonturgid cells, the osmotic volume is directly proportional to the reciprocal of the external osmotic pressure) showed that the nonosmotic volume represented up to 53% of the total cell volume; the highest values were recorded in media with maximum added NaCl. Determinations of intracellular glycerol levels with respect to cell osmotic volumes showed that increases in intracellular glycerol may counterbalance up to 95% of the external osmotic pressure due to added NaCl. The lack of other organic osmotica in 13C-nuclear magnetic resonance spectra indicates that inorganic ions may constitute the remaining component of intracellular osmotic pressure.  相似文献   

8.
Natural-abundance 13C-nuclear magnetic resonance spectroscopy has shown glycerol to be the major osmotically significant low-molecular-weight solute in exponentially growing, salt-stressed cells of the yeasts Saccharomyces cerevisiae, Zygosaccharomyces rouxii, and Debaromyces hansenii. Measurement of the intracellular nonosmotic volume (i.e., the fraction of the cell that is osmotically unresponsive) by using the Boyle-van't Hoff relationship (for nonturgid cells, the osmotic volume is directly proportional to the reciprocal of the external osmotic pressure) showed that the nonosmotic volume represented up to 53% of the total cell volume; the highest values were recorded in media with maximum added NaCl. Determinations of intracellular glycerol levels with respect to cell osmotic volumes showed that increases in intracellular glycerol may counterbalance up to 95% of the external osmotic pressure due to added NaCl. The lack of other organic osmotica in 13C-nuclear magnetic resonance spectra indicates that inorganic ions may constitute the remaining component of intracellular osmotic pressure.  相似文献   

9.
Single isolated muscle fibers from the walking legs of the blue crab, Callinectes sapidus act as Boyle-van't Hoff osmometers with an osmotically inactive volume of 33 %. Fibers in hypotonic salines undergo a spontaneous volume readjustment toward the initial volumes of the cells found in isotonic salines. The volume readjustment is initiated by the increase in cell volume in hypotonic salines and appears to be dependent on the duration of exposure of the fiber to external sodium, the sodium concentration, and the pH of the external medium. The volume-readjusted cells continue to behave as osmometers, but with an increased relative osmotically inactive volume and a decreased internal resistivity. The decreases in cell volumes appear to be, in large part, due to losses of osmotically active nonelectrolytes from the cells.  相似文献   

10.
Abstract. The non-osmotic volume (NOV) of Connnelina communis L. guard cells was estimated by observing the volumes of guard cell protoplasts incubated in mannitol solutions of different solute potential, and applying the Boyle-van't Hoff relation to the results. NOV values of between 517 and 1782 μm3 were obtained for different batches of protoplasts. There was a negative correlation between NOV and apparent protoplast solute contents, and the NOV and solute content were observed to alter when pretreatments affecting stomatal aperture were given. H is hypothesized that changes in guard cell chloroplast starch levels could account for variation in NOV and solute content.
For closed stomata, it is calculated that the NOV could reduce the proportion of the total guard cell volume which is osmotically active by over 40%. Serious inaccuracy may thus result if the NOV is not taken into account in the estimation of guard cell solute potential or solute concentration from measurements of solute levels per cell. The error is maximal at low stomatal apertures.  相似文献   

11.
When spinach thylakoid membranes were frozen in vitro in solutions containing constant molar ratios of cryotoxic to cryoprotective solute, maintenance of functional integrity strongly depended on initial osmolarities. Optimum cryopreservation of cyclic photophosphorylation was observed when the membranes were suspended in solutions of intermediate osmolarities (approx. 50–100 mM NaCl, 75–150 mM sucrose). Both higher and lower initial osmolarities were found to result in decreased cryopreservation. In the absence of added salt, more than 100 mM sucrose were needed for full cryopreservation of the membranes. When thylakoids were frozen in solutions containing low concentrations of NaCl (2 mM), the ratio of sucrose to salt necessary to give full protection was high (up to 50). When the salt concentration was about 60 mM, ratios as low as 1.5 were sufficient for maintaining membrane integrity. This ratio increased again, as the initial NaCl concentration was increased beyond 60 mM. During freezing, proteins dissociated from the membranes, and the amount of the released proteins was correlated linearly with inactivation of photophosphorylation. The gel electrophoretic pattern of proteins released at low initial osmolarities differed from that of proteins released at high initial osmolarities. Cryopreservation was also found to depend on membrane concentration. Concentrated membrane suspensions suffered less inactivation than dilute suspensions. The protective effect of high membrane concentrations was particularly pronounced at high initial solute concentrations. It is proposed that damage at low initial osmolarities is caused predominantly by mechanical stress and by osmotic contraction/expansion. Damage at high initial osmolarities is thought to be caused mainly by solute effects. Under these conditions, both the final volume of the unfrozen solution in coexistence with ice and the membrane concentration affect membrane survival by influencing the extent of the loss of membrane components through dissociation reactions. Membrane protection by sugars is caused by colligative action under these circumstances.  相似文献   

12.
Cells from the kidney medulla are able to survive and function when exposed to high concentrations of NaCl and urea. In vitro, cultured epithelial cells from the kidney medulla are able to survive stronger acute hyperosmotic shocks when both solutes are present. However, in vivo, increases in osmolarity are not acute. In this study, we compared the survival of a murine renal epithelial cell line during acute or progressive (two step) adaptation to hypertonic NaCl and/or urea. Increasing osmolarity to 700 mOsm/l with NaCl or urea in a single step led to massive cell death ( 50% in 24 hours). However, genomic DNA of dying cells was not degraded, and electron microscopy revealed weak condensation of chromatin, absence of membrane blebbing, and no nuclear indentation. Pre-adaptation to permissive concentrations of NaCl (200 mOsm/l giving a final osmolarity of 500 mOsm/l) protected cells against subsequent increases in osmolarity, allowing adaptation to final osmolarities as high as 900 mOsm/l. In contrast, pre-adaptation to permissive concentrations of urea (200 mOsm/l) did not lead to enhanced cell survival after a subsequent 200 mOsm/l step. Cell death was as rapid as after an acute shock, but was more typical of apoptosis (genomic DNA laddering, strong chromatin condensation, nuclear indentation, and blebbing of the membrane giving rise to apoptotic bodies). Thus, acute hyperosmolarity induces cell death with essentially similar responses to NaCl and urea. In contrast, progressive adaptation of mIMCD3 cells to NaCl allows cell survival, whereas progressive adaptation to hyperosmotic urea triggers a cell death pathway different from the one triggered by acute hyperosmotic shocks.  相似文献   

13.
Recently, we showed that at constant extracellular osmolarity, the volume of NG108-15 cells was dependent on the external NaCl concentration and we assumed that the responsible mechanism was mediated by background channels (Rouzaire-Dubois et al. 1999). In order to confirm this view, the mean cell volume and the background current of NG108-15 cells were measured under different experimental conditions, after blockade of specific volume regulating mechanisms and ion channels. When the external NaCl concentration was decreased, the reversal potential of the background current was shifted toward negative values and the membrane conductance decreased. Opposite effects were observed when the NaCl concentration was increased. Substitution of external Na+ with various monovalent cations altered the mean cell volume by: Rb+, +17%; Cs+, +15%; K+, +10%; Li+, -6%; choline, -9%; N-methylglucamine, -25% . The reversal potential of the background current and the membrane conductance were altered by these Na+ substitutes in such a way that the cell volume increased linearly with the background current at -60 mV. Substitution of external Cl- with various monovalent anions altered the mean cell volume by: I-, +4%; Br-, 0%; NO-, -3%; F-, -5%; isethionate, -30%; gluconate, -50%. Cl- substitutes did not significantly alter the background current at -60 mV, except F- which increased it by 39%. These results suggest that 1. the cell volume is dependent on ion fluxes through background channels; 2. electrogenic cation fluxes are larger than anionic ones and the background current is proportional to the difference between these fluxes; 3. whereas external cations do not interfere with anion fluxes, external anions alter cation fluxes.  相似文献   

14.
The theory of mixtures is applied to the analysis of the passive response of cells to osmotic loading with neutrally charged solutes. The formulation, which is derived for multiple solute species, incorporates partition coefficients for the solutes in the cytoplasm relative to the external solution, and accounts for cell membrane tension. The mixture formulation provides an explicit dependence of the hydraulic conductivity of the cell membrane on the concentration of permeating solutes. The resulting equations are shown to reduce to the classical equations of Kedem and Katchalsky in the limit when the membrane tension is equal to zero and the solute partition coefficient in the cytoplasm is equal to unity. Numerical simulations demonstrate that the concentration-dependence of the hydraulic conductivity is not negligible; the volume response to osmotic loading is very sensitive to the partition coefficient of the solute in the cytoplasm, which controls the magnitude of cell volume recovery; and the volume response is sensitive to the magnitude of cell membrane tension. Deviations of the Boyle-van't Hoff response from a straight line under hypo-osmotic loading may be indicative of cell membrane tension.  相似文献   

15.
The growth and buoyant densities of two closely related strains of Escherichia coli in M9-glucose medium that was diluted to produce osmolarities that varied from as low as 5 to 500 mosM were monitored. At 15 mosM, the lowest osmolarity at which buoyant density could be measured reproducibly in Percoll gradients, both ML3 and ML308 had a buoyant density of about 1.079 g/ml. As the osmolarity of the medium was increased, the buoyant density also increased linearly up to about 125 mosM, at which the buoyant density was 1.089 g/ml. From 150 up to 500 mosM, the buoyant density again increased linearly but with a different slope from that seen at the lower osmolarities. The buoyant density at 150 mosM was about 1.091 g/ml, and at 500 mosM it was 1.101 g/ml. Both strains of E. coli could be grown in M9 medium diluted 1:1 with water, with an osmolarity of 120 mosM, but neither strain grew in 1:2-diluted M9 if the cells were pregrown in undiluted M9. (Note: undiluted M9 as prepared here has an osmolarity of about 250 mosM.) However, if the cells were pregrown in 30% M9, about 75 mosM, they would then grow in M9 at 45 mosM and above but not below 40 mosM. To determine which constituent of M9 medium was being diluted to such a low level that it inhibited growth, diluted M9 was prepared with each constituent added back singly. From this study, it was determined that both Ca2+ and Mg2+ could stimulate growth below 40 mosM. With Ca2+ - and Mg2+ -supplemented diluted M9 and cells pregrown in 75 mosM M9, it was possible to grow ML308 in 15 mosM M9. Strain ML3 would only haltingly grow at 15 mosM. Four attempts were made to grow both ML3 and ML308 at 5 mosM. In three of the experiments, ML308 grew, while strain ML3 grew in one experiment. While our experiments were designed to effect variations in medium osmolarity by using NaCl as an osmotic agent, osmolarity and salinity were changed concurrently. Therefore, from this study, we believe that E. coli might be defined as an euryhalinic and/or euryosmotic bacterium because of its ability to grow in a wide range of salinities and osmolarities.  相似文献   

16.
Suicidal erythrocyte death following cellular K+ loss.   总被引:1,自引:0,他引:1  
Hallmarks of apoptosis include cell shrinkage, which is at least partially due to cellular K(+) loss. The decline of cellular K(+) concentration has been suggested to participate in the triggering of apoptosis. Suicidal erythrocyte death or eryptosis is triggered by increased cytosolic Ca(2+) activity leading to activation of Ca(2+)-sensitive K(+) channels with subsequent cellular K(+) loss and cell shrinkage, and to Ca(2+)-sensitive scambling of the cell membrane with subsequent phosphatidylserine (PS) exposure at the cell surface. Phosphatidylserine exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. The present study explored whether cellular loss of K(+) and/or cell shrinkage actively participate in the triggering of cell membrane phospholipid scrambling. Cellular K(+) loss was achieved by treatment of human erythrocytes with the K(+) ionophore valinomycin (1 nM) at different extracellular K(+) concentrations (5-125 mM) and osmolarities (300-550 m Osm). Cell volume was estimated from forward scatter and PS exposure from annexin V binding in FACS analysis. Treatment with 1 nM valinomycin indeed decreased forward scatter and increased annexin V binding. The effect was significantly blunted in the presence of staurosporine (1 microM). Increase of extracellular K(+) concentration gradually blunted the decrease of forward scatter but inhibited annexin V binding only at extracellular K(+) concentrations >or=75 mM. An increase of extracellular osmolarity (+150 mM or 250 mM sucrose) reversed the protective effect of 75 mM KCl during valinomycin treatment. A correlation between forward scatter and annexin binding at different osmolarities and K(+) concentrations suggests that the cellular K(+) content determines the rate of suicidal erythrocyte death primarily through its influence on cell volume.  相似文献   

17.
J D Lin 《Life sciences》1988,43(4):325-333
Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86Rb (as a tracer for K) into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity on K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed.  相似文献   

18.
19.
The effect of medium osmolarity on the morphology and growth of Methanosarcina barkeri, Methanosarcina thermophila, Methanosarcina mazei, Methanosarcina vacuolata, and Methanosarcina acetivorans was examined. Each strain was adapted for growth in NaCl concentrations ranging from 0.05 to 1.0 M. Methanosarcina spp. isolated from both marine and nonmarine sources exhibited similar growth characteristics at all NaCl concentrations tested, demonstrating that these species are capable of adapting to a similar range of medium osmolarities. Concomitant with the adaptation in 0.4 to 1.0 M NaCl, all strains disaggregated and grew as single cells rather than in the characteristic multicellular aggregates. Aggregated cells had a methanochondroitin outer layer, while disaggregated single cells lacked the outer layer but retained the protein S-layer adjacent to the cell membrane. Synthesis of glucuronic acid, a major component of methanochondroitin, was reduced 20-fold in the single-cell form of M. barkeri when compared with synthesis in aggregated cells. Strains with the methanochondroitin outer cell layer exhibited enhanced stability at low (<0.2 M NaCl) osmolarity and grew at higher temperatures. Disaggregated cells could be converted back to aggregated cells by gradually readapting cultures to lower NaCl (<0.2 M) and Mg2+ (<0.005 M) concentrations. Disaggregated Methanosarcina spp. could also be colonized and replica plated with greater than 95% recovery rates on solidified agar basal medium that contained 0.4 to 0.6 M NaCl and either trimethylamine, methanol, or acetate as the substrate. The ability to disaggregate and grow Methanosarcina spp. as viable, detergent-sensitive, single cells on agar medium makes these species amenable to mutant selection and screening for genetic studies and enables cells to be gently lysed for the isolation of intact genetic material.  相似文献   

20.
Summary Protoplasts were prepared from cells ofChlorella saccharophila by treatment with a mixture of pectinase and cellulase. The yield of protoplasts is dependent upon the culture conditions prior to cell wall digestion. In thin section chemically-fixed protoplasts were without wall remnants at the surface of the plasma membrane. Of particular interest is the relationship between the Golgi apparatus and a nuclear envelope-endoplasmic reticulum continuum. Protoplasts have a photosynthetic capacity lying between 70 and 80% of that of normal cells, but show the same response towards CO2 concentration and DCMU inhibition. Protoplasts also respond to changes in the osmolarity of the surrounding medium in accordance with the Boylevan't Hoff equation as if they are an osmometer. The nonosmotic volume (NOV) was calculated.Abbreviations GA Golgi apparatus - ER endoplasmic reticulum - NE nuclear envelope - PM plasma membrane - N nucleus - S starch - M mitochondria - V vacuole  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号