首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During activation of the renin-angiotensin system, hindbrain circumventricular organs such as the area postrema have been implicated in modulating the arterial baroreflex. This study was undertaken to test the hypothesis that the subfornical organ (SFO), a forebrain circumventricular structure, may also modulate the baroreflex. Studies were performed in rats with two-kidney, one-clip (2K,1C) hypertension as a model of endogenously activated renin-angiotensin system. Baroreflex function was ascertained during ramp infusions of phenylephrine and nitroprusside in conscious sham-clipped and 5-wk 2K,1C rats with either a sham or electrolytically lesioned SFO. Lesioning significantly decreased mean arterial pressure in 2K,1C rats from 158 +/- 7 to 131 +/- 4 mmHg but not in sham-clipped rats. SFO-lesioned, sham-clipped rats had a significantly higher upper plateau and range of the renal sympathetic nerve activity-mean arterial pressure relationship compared with sham-clipped rats with SFO ablation. In contrast, lesioning the SFO in 2K,1C rats significantly decreased both the upper plateau and range of the baroreflex control of renal sympathetic nerve activity, but only the range of the baroreflex response of heart rate decreased. Thus, during unloading of the baroreceptors, the SFO differentially modulates the baroreflex responses in sham-clipped vs. 2K,1C rats. Since lesioning the SFO did not influence plasma angiotensin II (ANG II), the effects of the SFO lesion are not caused by changes in circulating levels of ANG II. These findings support a pivotal role for the SFO in the sympathoexcitation observed in renovascular hypertension and in baroreflex regulation of sympathetic activity in both normal and hypertensive states.  相似文献   

2.
The rapid fall in blood pressure after removal of the constricting clip in two-kidney one-clip (2K-1C) hypertension in the rat is not fully explained by inhibition of the renin-angiotensin system or change in sodium balance. It has been postulated that compounds released in the renal venous effluent following unclipping of 2K-1C rats have a central opiate-like action and endogenous opioids are recognized to have profound hypotensive properties. To investigate this, we removed the clip from, or performed a sham operation in, early phase (less than 6 weeks) 2K-1C hypertensive rats during an infusion of naloxone, an opioid antagonist, or vehicle alone. The infusion of naloxone did not affect the pattern of blood pressure fall in either unclipped or sham-operated rats. Both naloxone-treated and control groups were similarly normotensive at 24 hr postoperation, the MAP being significantly lower than in the sham-operated groups, which regained previously hypertensive levels. Heart rate was unchanged 24 hr postoperatively in all groups. Morphine-induced bradycardia and hypotension were significantly reduced by naloxone infusion. Thus, naloxone infusion had no effect on blood pressure or heart rate in either the sham-operated or the unclipped groups, indicating that endogenous opioids do not have a major role in the reversal of renovascular hypertension under these circumstances.  相似文献   

3.
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 ± 17.3 versus 209 ± 10.9mm Hg in hypertensive controls, p<0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p<0.05). Doxycycline also decreased hypertension-induced oxidative stress (p<0.05), higher MMP activity (p<0.01) and improved NO levels in aortic endothelial cells (p<0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity.  相似文献   

4.
Dietary nitrite and nitrate are important sources of nitric oxide (NO). However, the use of nitrite as an antihypertensive drug may be limited by increased oxidative stress associated with hypertension. We evaluated the antihypertensive effects of sodium nitrite given in drinking water for 4 weeks in two-kidney one-clip (2K1C) hypertensive rats and the effects induced by nitrite on NO bioavailability and oxidative stress. We found that, even under the increased oxidative stress conditions present in 2K1C hypertension, nitrite reduced systolic blood pressure in a dose-dependent manner. Whereas treatment with nitrite did not significantly change plasma nitrite concentrations in 2K1C rats, it increased plasma nitrate levels significantly. Surprisingly, nitrite treatment exerted antioxidant effects in both hypertensive and sham-normotensive control rats. A series of in vitro experiments was carried out to show that the antioxidant effects induced by nitrite do not involve direct antioxidant effects or xanthine oxidase activity inhibition. Conversely, nitrite decreased vascular NADPH oxidase activity. Taken together, our results show for the first time that nitrite has antihypertensive effects in 2K1C hypertensive rats, which may be due to its antioxidant properties resulting from vascular NADPH oxidase activity inhibition.  相似文献   

5.
Garlic causes reduction in blood pressure (BP), however the role of Na/H exchanger (NHE) which mediates hypertension and related tissue-damage is poorly understood. In this study the effect of an established dose of raw garlic extract was investigated on the expression of NHE-1 and -3 and sodium pump activity in a 2K-1C model of hypertension in rats. 2K-1C animals showed high BP, increased serum concentration of PGE2 and TxB2, hypertrophy of the unclipped kidneys, but not in the clipped kidneys In addition, NHE-1 and NHE-3 isoforms were increased in both the 2K-1C kidneys, whereas alpha-actin was increased in the clipped but not in unclipped kidneys. Sodium pump activity was decreased in the clipped kidneys, but remained unchanged in the unclipped kidneys. Garlic treatment reduced the induction of NHE-1 only in the unclipped 2K-1C kidneys, whereas garlic treatment increased the sodium pump activity in both the 2K-1C kidneys. These findings demonstrate that the antihypertensive action of garlic is associated with a reversal of NHE-1 induction in the unclipped kidneys. Induction of NHE isoforms together with a reduced sodium pump activity might cause necrosis in the 2K-1C clipped kidneys due to cellular retention of Na+. On the other hand, activation of sodium pump by garlic extract in the kidneys should reduce intracellular Na+ concentration and normalize BP. These findings signify the use of garlic in the treatment of hypertension.  相似文献   

6.
This study examined the effect of diet-induced changes in prostaglandin synthesis on systolic blood pressure in one-kidney, one clip (1k, 1C) hypertensive rats and on the fall in blood pressure after unclipping. It tested the hypothesis that inhibition of prostaglandin synthesis exacerbates hypertension in this model and prevents complete reversal after unclipping. Rats with sustained hypertension within 8 weeks of renal artery clipping were fed synthetic diets supplemented to 20% of total energy with either safflower oil (linoleic acid) or a mixture of cod liver oil (90%) (containing eicosapentaenoic acid) and linseed oil (10%) (containing linolenic acid) for 4 weeks. The latter oil mixture resulted in a predictable reduction in kidney PGE2 and 6-keto PGF1 alpha (hydrolysis product of PGI2), aortic 6-keto PGF1 alpha and serum TXB2. However, at the end of 4 weeks dietary treatment there were no differences in systolic blood pressure between the two diet groups, and the blood pressure fall 24 hours after unclipping was similar. These findings therefore do not support a role for prostanoids in the maintenance or reversal of 1K, 1C hypertension.  相似文献   

7.
Sharifi AM  Darabi R  Akbarloo N 《Life sciences》2003,73(23):2963-2971
Tribulus terrestris is a natural herb used for treating many diseases including hypertension. According to previous reports, aqueous extract of tribulus fruits may have some antihypertensive effect with an unknown mechanism. The present study investigated the antihypertensive mechanism of tribulus in 2K1C hypertensive rats by measurement of circulatory and local ACE activity in aorta, heart, kidney and lung. Four groups of rats were selected; control, sham, operated or hypertensive and tribulus treated hypertensive group. Hypertension was induced using silver clip on renal artery by surgery. Four weeks after surgery, a single daily dose of 10 mg/kg of lyophilized aqueous extract of tribulus fruit were given orally to 2K1C rats for four weeks. ACE activity was determined by high performance liquid chromatography (HPLC). Blood pressure was measured by the tail-cuff method. The systolic blood pressure (SBP) was significantly increased in 2K1C rats compared to control rats. The SBP of tribulus fed hypertensive rats was significantly decreased compared to hypertensive rats. The ACE activity in all tissues of 2K1C rats including: aorta, heart, kidney, lung as well as serum were significantly increased compared to normal rats. The ACE activity in all tissues of tribulus fed hypertensive rats was significantly lower than that of hypertensive rats, which was more pronounced in kidney. These results indicated that there is a negative correlation between consumption of tribulus and ACE activity in serum and different tissues in 2K1C rats.  相似文献   

8.
CardioVascular Disease (CVD) accounts for considerable mortality and morbidity in developed countries. Most of the common forms of CVD, such as hypertension, are caused by functional and structural changes in endothelial function. This study was designed to study the effect of hypertension on serum Nitric Oxide (NO) and Vascular Endothelial Growth Factor (VEGF) concentrations in DOCA-Salt hypertensive ovariectomized rats. Thirty female rats were ovariectomized. Blood samples were taken and the animals were divided into hypertensive and control groups. Hypertension was induced by DOCA-Salt method. DOCA was injected 30 mg/kg of body weight subcutaneously, twice a week with NaCl 1% instead of tap water for drinking throughout the experiment. The control group received normal saline injection with usual drinking water. Results showed that serum NO concentration in DOCA-Salt hypertensive rats was lower than the control group (18.35 +/- 5.31, 45.01 +/- 12.54 micromol/l, respectively) (p < 0.05). Also, the mean serum VEGF concentration was raised after induced hypertension (120.55 +/- 8.11 vs. 88.58 +/- 2.24 pg/ml) (p < 0.05). In conclusion, reduced serum NO and increased serum VEGF concentrations in hypertensive animals support the concept of endothelial dysfunction in hypertensive subjects.  相似文献   

9.
This study examined the effect of diet-induced changes in prostaglandin synthesis on systolic blood pressure in one-kidney, one clip (1K, 1C) hypertensive rats and on the fall in blood pressure after unclipping. It tested the hypothesis that inhibition of prostaglandin synthesis exacerbates hypertension in this model and prevents complete reversal after unclipping. Rats with sustained hypertension within 8 weeks of renal artery clipping were fed synthetic diets supplemented to 20% of total energy with either safflower oil (linoleic acid) or a mixture of cod liver oil (90%) (containing eicosapentaenoic acid) and linseed oil (10%) (containing linolenic acid) for 4 weeks. The latter oil mixture resulted in a predictable reduction in kidney PGE2 and 6-keto PGF (hydrolysis product of PGI2), aortic 6-keto PGF and serum TXB2. However, at the end of 4 weeks dietary treatment there were no differences in systolic blood pressure between the two diet groups, and the blood pressure fall 24 hours after unclipping was similar. These findings therefore do not support a role for prostanoids in the maintenance or reversal of 1K, 1C hypertension.  相似文献   

10.
ABSTRACT: BACKGROUND: Inflammation processes are important participants in the pathophysiology of hypertension and cardiovascular diseases. The role of the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) in inflammation has recently been identified. Our previous study has demonstrated that the alpha7nAChR-mediated cholinergic anti-inflammatory pathway is impaired systemically in the genetic model of hypertension. In this work, we investigated the changes of alpha7nAChR expression in a model of secondary hypertension. METHODS: The 2-kidney 1-clip (2K1C) hypertensive rat model was used. Blood pressure, vagus nerve function, serum tumor necrosis factor-alpha (TNF-alpha) and both the mRNA and protein levels of alpha7nAChR in tissues from heart, kidney and aorta were measured at 4, 8 and 20 weeks after surgery. RESULTS: Compared with age-matched control, it was found that vagus nerve function was significantly decreased in 2K1C rats with the development of hypertension. Serum levels of TNF-alpha were greater in 2K1C rats than in age-matched control at 4, 8 and 20 weeks. alpha7nAChR mRNA in the heart was not altered in 2K1C rats. In the kidney of 2K1C rats, alpha7nAChR expression was significantly decreased at 8 and 20 weeks, but markedly increased at 4 weeks. alpha7nAChR mRNA was less in aorta of 2K1C rats than in age-matched control at 4, 8 and 20 weeks. These findings were confirmed at the protein levels of alpha7nAChR. CONCLUSIONS: Our results suggested that secondary hypertension may induce alpha7nAChR downregulation, and the decreased expression of alpha7nAChR may contribute to inflammation in 2K1C hypertension.  相似文献   

11.
Angiotensin-(1-7) [ANG-(1-7)] plays a counterregulatory role to angiotensin II in the renin-angiotensin system. In trained spontaneous hypertensive rats, Mas expression and protein are upregulated in ventricular tissue. Therefore, we examined the role of ANG-(1-7) on cardiac hemodynamics, cardiac functions, and cardiac remodeling in trained two-kidney one-clip hypertensive (2K1C) rats. For this purpose, rats were divided into sedentary and trained groups. Each group consists of sham and 2K1C rats with and without ANG-(1-7) infusion. Swimming training was performed for 1 h/day, 5 days/wk for 4 wk following 1 wk of swimming training for acclimatization. 2K1C rats showed moderate hypertension and left ventricular hypertrophy without changing left ventricular function. Chronic infusion of ANG-(1-7) attenuated hypertension and cardiac hypertrophy only in trained 2K1C rats but not in sedentary 2K1C rats. Chronic ANG-(1-7) treatment significantly attenuated increases in myocyte diameter and cardiac fibrosis induced by hypertension in only trained 2K1C rats. The Mas receptor, ANG II type 2 receptor protein, and endothelial nitric oxide synthase phosphorylation in ventricles were upregulated in trained 2K1C rats. In conclusion, chronic infusion of ANG-(1-7) attenuates hypertension in trained 2K1C rats.  相似文献   

12.
Regional blood flows and cardiac hemodynamics were studied in 3 models of hypertensive rats: one-kidney DOC-saline, one-kidney, one-clip and two-kidney, one-clip hypertension and in normotensive control rats. All hypertensive models were characterized by increased peripheral vascular resistance and normal cardiac output. Coronary and cerebral blood flows varied among the hypertensive models but did not significantly differ from the normotensive rats. However, coronary blood flow of one-kidney, one-clip rats (8.4 +/- 1.3 ml X min-1 X g-1) was significantly higher than that of the two-kidney one-clip rats (6.5 +/- 1.2 ml X min.-1 X g-1, P less than 0.05). Cerebral blood flow of DOC-saline rats was lower than that of two-kidney one-clip or one-kidney one-clip renovascular rats. Renal blood flows of the unclipped kidney of two-kidney renovascular rats (3.77 +/- 0.85 ml X min-1 X g-1) and DOC-saline rats (2.95 +/- 0.83 ml X min-1 X g-1) were significantly lower than those of normotensive rats (5.92 +/- 1.16 ml X min-1 X g-1, P less than 0.05). In conclusion, although vascular resistance becomes elevated in all models of experimental hypertension, regional vascular resistance and blood flow distribution may differ depending on the vasoconstrictor mechanisms that participate in each model.  相似文献   

13.
While soluble fms-like tyrosine kinase-1 (sFlt-1) and endothelin-1 (ET-1) have been implicated in the pathogenesis of preeclampsia (PE), the mechanisms whereby increased sFlt-1 leads to enhanced ET-1 production and hypertension remain unclear. It is well documented that nitric oxide (NO) production is reduced in PE; however, whether a reduction in NO synthesis plays a role in increasing ET-1 and blood pressure in response to chronic increases in plasma sFlt-1 remains unclear. The purpose of this study was to determine the role of reduced NO synthesis in the increase in blood pressure and ET-1 in response to sFlt-1 in pregnant rats. sFlt-1 was infused into normal pregnant (NP) Sprague-Dawley rats (3.7 μg·kg(-1)·day(-1) for 6 days beginning on day 13 of gestation) treated with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (100 mg/l for 4 days) or supplemented with 2% L-Arg (in drinking water for 6 days beginning on day 15 of gestation). Infusion of sFlt-1 into NP rats significantly elevated mean arterial pressure compared with control NP rats: 116 ± 2 vs. 103 ± 1 mmHg (P < 0.05). NO synthase inhibition had no effect on the blood pressure response in sFlt-1 hypertensive pregnant rats (121 ± 3 vs. 116 ± 2 mmHg), while it significantly increased mean arterial pressure in NP rats (128 ± 4 mmHg, P < 0.05). In addition, NO production was reduced ~70% in isolated glomeruli from sFlt-1 hypertensive pregnant rats compared with NP rats (P < 0.05). Furthermore, prepro-ET-1 in the renal cortex was increased ~3.5-fold in sFlt-1 hypertensive pregnant rats compared with NP rats. Supplementation with L-Arg decreased the sFlt-1 hypertension (109 ± 3 mmHg, P < 0.05) but had no effect on the blood pressure response in NP rats (109 ± 3 mmHg) and abolished the enhanced sFlt-1-induced renal cortical prepro-ET expression. In conclusion, a reduction in NO synthesis may play an important role in the enhanced ET-1 production in response to sFlt-1 hypertension in pregnant rats.  相似文献   

14.
This study has been designed to investigate the role of phosphatidyl-inositol 3-kinase-γ (PI3Kγ) in deoxycorticosterone acetate salt (DOCA) hypertension induced vascular endothelium dysfunction. Wistar rats were uninephrectomised and DOCA (40 mg·(kg body mass)(-1), subcutaneous injection) was administered twice weekly for 6 weeks to produce hypertension. Rats with mean arterial blood pressure ≥ 140 mm Hg (1 mm Hg = 133.322 Pa) were selected as hypertensive. Vascular endothelium dysfunction was assessed in terms of attenuation of acetylcholine-induced endothelium-dependent relaxation (isolated aortic ring preparation), decrease in serum nitrate and (or) nitrite level, as well as reduced level of glutathione and disruption of integrity of vascular endothelium (histopathology). Five weeks of DOCA administration were followed by 7 days of daily administration of PI3Kγ inhibitor (5-[[5-(4-fluorophenyl)-2-furanyl]methylene]-2,4-thiazolidinedione (CAY10505), 0.6 mg·kg(-1), per os (p.o.)), atorvastatin (30 mg·kg(-1), p.o.), and losartan (25 mg·kg(-1), p.o.) (positive control of hypertension), which significantly improved acetylcholine-induced endothelium dependent relaxation, serum nitrate and (or) nitrite level, glutathione level, and the vascular endothelial lining in hypertensive rats.Therefore, it may be concluded that CAY10505, a specific inhibitor of PI3Kγ, improves hypertension-associated vascular endothelial dysfunction. Thus, inhibition of PI3Kγ might be a useful approach in the therapeutics of vascular endothelium dysfunction.  相似文献   

15.
The 2-kidney, 1-clip (2K1C) model has provided many insights into the pathogenesis of renovascular hypertension. However, studies using the 2K1C model often report low success rates of hypertension, with typical success rates of just 40-60%. We hypothesized that these low success rates are due to fundamental design flaws in the clips traditionally used in 2K1C models. Specifically, the gap widths of traditional silver clips may not be maintained during investigator handling and these clips may also be easily dislodged from the renal artery following placement. Therefore, we designed and tested a novel vascular clip possessing design features to maintain both gap width and position around the renal artery. In this initial study, application of these new clips to the left renal artery produced reliable and consistent levels of hypertension in rats. Nine-day application of clips with gap widths of 0.27, 0.25, and 0.23 mm elicited higher mean arterial blood pressures of 112 ± 4, 121 ± 6, and 135 ± 7 mmHg, respectively (n = 8 for each group), than those of sham-operated controls (95 ± 2 mmHg, n = 8). Moreover, 8 out of 8 rats in each of the 0.23 and 0.25 mm 2K1C groups were hypertensive, whereas 7 out of 8 rats in the 0.27 mm 2K1C group were hypertensive. Plasma renin concentrations were also increased in all 2K1C groups compared with sham-operated controls. In summary, this novel clip design may help eliminate the large degree of unreliability commonly encountered with the 2K1C model.  相似文献   

16.
《Free radical research》2013,47(11):1335-1343
Abstract

We hypothesize that exercise training (EX) reverses the level of nitric oxide (NO) and oxidative stress into rostral ventrolateral medulla (RVLM) of renovascular hypertensive rats (two kidneys, one clip - 2K1C). Microinjections of L-arginine (5 nmol), L-NAME (10 nmol), or saline (100 nl) were made into RVLM of 2K1C and normotensive (SHAM) rats sedentary (SED) or subjected to swimming for 4 weeks. mRNA expression (by qRT-PCR) of nitric oxide synthases isoforms (nNOS, eNOS, and iNOS), manganese superoxide dismutase (MnSOD), copper and zinc superoxide (Cu/ZnSOD), catalase (CAT), NADPH oxidase subunit p22phox, concentration of thiobarbituric acid-reactive substances (TBARS), and CAT activity into RVLM were evaluated. The mean arterial pressure was reduced in 2K1C EX compared with that in 2K1C SED rats. L-arginine into RVLM induced hypertensive effect in 2K1C and SHAM SED rats, while L-NAME prevented hypertensive effect only in SHAM-SED. EX reduced hypertensive effect of L-arginine in SHAM and 2K1C rats. mRNA expression of NOS isoforms, p22phox, and concentration of TBARS were increased while CAT and Cu/ZnSOD expression and CAT activity decreased into RVLM of 2K1C-SED compared with SHAM-SED rats. Additionally, EX reversed mRNA expression of CAT and NOS isoforms, concentration of TBARS, and CAT activity into RVLM of 2K1C-EX rats. These data suggest that the levels of NOS and oxidative stress into RVLM are important to determine the level of hypertension. Furthermore, EX can restore the blood pressure by reversing the levels of NOS and CAT expression, and reducing TBARS concentration into RVLM for the physiological state.  相似文献   

17.
Shortage of endothelial nitric oxide (NO) manifested as decreased daily urinary excretion of nitrate and nitrite as well as attenuated endothelium-dependent relaxation of conduit and resistance vessels progresses with age-related increase of blood pressure (BP) in stroke-prone spontaneously hypertensive rats (SHRSP). Simultaneous NO-dependent suppression of vascular contractions is, apparently, due to the inducible NO synthase activity in vascular smooth muscle specific for spontaneously hypertensive rat. The adaptation of rats to hypobaric hypoxia initiated at early hypertensive stage (at the age of 5–6 weeks) decelerates hypertension progress. The antihypertensive effect of the adaptation was accompanied by stimulation of endothelial NO synthesis and prevention of impaired NO-dependent response in isolated blood vessels. Nitric oxide stores were formed in the vascular wall of SHRSP and WKY rats at the same time. The obtained data indicate that the correction of endothelial NO deficiency plays a significant role in the antihypertensive effect of adaptation to hypoxia.  相似文献   

18.
Chan WY  Cheng RS  Yew DT 《Life sciences》2000,66(17):1615-1625
Vascular endothelial growth factor (VEGF) has been shown to have potent mitotic activity specific to vascular endothelial cells and has been related to vascular permeability, angiogenesis and cell proliferation in both normal and pathological situations. The present study aimed at elucidating the spatio-temporal changes in the postnatal expression pattern of VEGF in the retinae of both normal and hypertensive rats. In situ hybridization with a riboprobe showed that in the pre-hypertensive stage (2 weeks postnatal, prior to the increase of the blood pressure of the hypertensive rat), VEGF expressed strongly in the retinal pigment epithelium (RPE) and inner nuclear layer (INL) but weakly in the ganglion cell layer and nerve fiber layer in both the normal and hypertensive rats. During the early hypertensive stage (6 weeks postnatal, initial increase of the blood pressure of the hypertensive rat), similar expression pattern was maintained but the INL of the hypertensive rat was found to have more positive cells in clusters than that of the normal rat. When a sustained high blood pressure was developed (12 weeks postnatal, sustained hypertensive stage) in the hypertensive rat, the VEGF expression was much reduced in all layers of the retina although weak expression was still observed in the RPE of the normal rat and RPE and INL of the hypertensive rat. Western blot analysis however showed that VEGF protein expression in the retina was much stronger in the hypertensive rat than in the normal rat at 2 and 6 weeks postnatal. At 12 weeks, the VEGF protein returned to a level comparable to that found in the normal rat. It is speculated that the change of the VEGF protein expression pattern during the early phase of the development of hypertension may be related to the subsequent changes in the retinal vasculature of the hypertensive rat.  相似文献   

19.
20.
The link between chronic alcohol consumption and cardiovascular injury including hypertension is well known. However, molecular mediators implicated with alcohol-induced elevation in blood pressure (BP) remain elusive. The aim of this study was to investigate the relationship of chronic ethanol-induced endothelial injury and elevation in BP with angiotensin II levels in rats. Male Fisher rats were divided into two groups of seven animals each and treated as follows: (1) Control (5% sucrose, orally) daily for 12 weeks and (2) ethanol (4 g kg−1, orally) daily for 12 weeks. The BP (systolic, diastolic, and mean) was recorded every week. The animals were anesthetized with pentobarbital after 12 weeks; blood and thoracic aorta were isolated and analyzed for aortic reactivity response, angiotensin II levels, and oxidative endothelial injury. The results show that the systolic, diastolic, and mean BP were significantly elevated 12 weeks after ethanol ingestion. The increased BP was related to elevated angiotensin II levels in the plasma and aorta of alcohol treated group compared to control. The aortic NADPH oxidase activity, ratio of oxidized to reduced glutathione (GSSG/GSH) and lipid peroxidation significantly increased, whereas nitric oxide (NO), endothelial NO synthase (eNOS), and vascular endothelial growth factor (VEGF) protein expressions were depressed in alcohol group compared to control. The phenylephrine-mediated vasoconstriction response was not altered, while acetylcholine-mediated vasorelaxation response was depressed in the aorta of ethanol treated rats compared to control. It is concluded that chronic ethanol ingestion induces hypertension which is correlated with elevated tissue angiotensin II levels, activation of NADPH oxidase activity causing endothelial injury, depletion of endothelial NO generating system, and impaired vascular relaxation in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号