首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of the autophagy adaptor protein p62/SQSTM1 in Japanese encephalitis virus (JEV) replication in mouse embryonic fibroblasts (MEFs) was investigated. Amounts of JEV RNA and E protein were significantly smaller in p62‐deficient cells than wild‐type cells at 24 hr post‐infection (p.i.). JEV RNA quantitation and viral plaque assays showed significant reductions in viral titers in p62‐deficient cell culture fluid. Our results indicate that JEV replication is impaired in p62‐deficient MEFs, suggesting that p62 positively regulates JEV replication in host cells.  相似文献   

2.
Eukaryotic cells use the extracellular signal regulated kinase (ERK) cascade to connect cell-surface receptors to intracellular targets. Although various signals are routed through the ERK pathway, cells respond accordingly to a given stimulus. To regulate proper signal transduction, scaffolds and adaptors are employed to organize specific signaling units. The scaffold protein MP1 (MEK1 partner) assembles a scaffold complex in the ERK cascade. We show that p14 functions as an adaptor protein, which is required and sufficient to localize MP1 to endosomes. Reduction of MP1 or p14 protein levels by siRNAi results in defective signal transduction. Therefore, our results suggest that the endosomal localization of the p14/MP1-MAPK scaffold complex is crucial for signal transduction.  相似文献   

3.
Proteomic analysis of neural differentiation of mouse embryonic stem cells   总被引:4,自引:0,他引:4  
Wang D  Gao L 《Proteomics》2005,5(17):4414-4426
Mouse embryonic stem cells (mESCs) can differentiate into different types of cells, and serve as a good model system to study human embryonic stem cells (hESCs). We showed that mESCs differentiated into two types of neurons with different time courses. To determine the global protein expression changes after neural differentiation, we employed a proteomic strategy to analyze the differences between the proteomes of ES cells (E14) and neurons. Using 2-DE plus LC/MS/MS, we have generated proteome reference maps of E14 cells and derived dopaminergic neurons. Around 23 proteins with an increase or decrease in expression or phosphorylation after differentiation have been identified. We confirmed the downregulation of translationally controlled tumor protein (TCTP) and upregulation of alpha-tubulin by Western blotting. We also showed that TCTP was further downregulated in derived motor neurons than in dopaminergic neurons, and its expression level was independent of extracellular Ca(2+) concentration during neural differentiation. Potential roles of TCTP in modulating neural differentiation through binding to Ca(2+), tubulin and Na,K-ATPase, as well as the functional significance of regulation of other proteins such as actin-related protein 3 (Arp3) and Ran GTPase are discussed. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.  相似文献   

4.
Magee J  Cygler M 《Biochemistry》2011,50(18):3696-3705
Scaffold and adaptor proteins provide means for the spatial organization of signaling cascades. MP1 is a scaffold protein in the RAF/MEK/ERK pathway and together with p14 forms a heterodimer that was shown to be responsible for localization of MEK to the late endosomal compartment. However, the mechanism by which MP1/p14 tethers MEK to the endosomal membrane was not resolved. Recently, an adaptor protein p18 was identified as a binding partner of MP1/p14. p18 is attached to the endosomal surface by myristoyl and palmitoyl groups located at the N-terminus of the protein and tethers the signaling complex to the cytoplasmic surface of late endosomes. p18 expressed in E. coli is retained in inclusion bodies, and we developed a protocol to refold it from the denatured state. Coexpression of p18 with MP1/p14 leads to a soluble protein complex. We examined the interaction of p18 with the MP1/p14 constitutive heterodimer. We cloned various constructs of p18 and characterized their behavior and interactions with MP1/p14 in vitro using SEC and pull-down assays. We determined that the refolded p18 is a monomer in solution with molten globule characteristics. Its binding to MP1/p14 promotes folding and ordering. We also identified a proteolytically stable fragment of p18 and showed that it binds to MP1/p14 with similar affinity to the full-length construct and determined an apparent dissociation constant in the low micromolar range for the interaction. Finally, we show that the ~60 C-terminal residues of p18 are not required for in vitro interaction with MP1/p14 heterodimer, in contrast to previously reported findings showing that truncation of 41 C-terminal residues of p18 prevents endosomal localization of MP1/p14.  相似文献   

5.
MTMR14 is a phosphoinositide phosphatase, which has been reported to regulate the maintenance of normal muscle performance and aging in mice. However, the function of MTMR14 in mouse embryonic fibroblasts (MEFs) remains largely unknown. In this study, we established MTMR14 WT and KO MEFs and showed that MTMR14 is localized in whole MEFs, with higher level in nucleus and lower in cytoplasm, partially overlapping with mitochondrial. Compared with the WT control, MTMR14 KO MEFs exhibit a higher proliferation rate and more obvious autophagy. Furthermore, we demonstrate that KO of MTMR14 significantly decreased the mRNA levels of p21 and p27, while increased those of cyclinD and cyclinE. Upon (insulin-like growth factor) IGF stimulation, we also found KO of MTMR14 enhanced the phosphorylation levels of AKT and ERK in MEFs. Based on these findings, we propose that defect of MTMR14 promotes autophagy and cell proliferation in MEFs.  相似文献   

6.
We studied the effects of Pin1, a regulatory molecule of the oncosuppressor p53, on both cell cycle arrest and apoptosis by treating primary mouse embryonic fibroblasts (MEFs) with etoposide. Etoposide induced G1 arrest in both wild-type and Pin1 null (pin1(-/-)) MEFs, and G2/M arrest and apoptotic cell death in MEFs lacking either p53 only (p53(-/-)) or both Pin1 and p53 (pin1(-/-)p53(-/-)). Both pin1(-/-) and pin1(-/-)p53(-/-) MEFs were enhanced the release of cytochrome c from the mitochondria, which might induce apoptosis. In response to etoposide treatment, apoptotic cell death was displayed in pin1(-/-)p53(-/-) MEFs but not in pin1(-/-) MEFs. These results suggest that p53 retards growth and suppresses etoposide-induced apoptosis in pin1(-/-) MEFs.  相似文献   

7.
Implantation of autologous rodent fibroblasts genetically altered to express human growth hormone has recently been shown to be a feasible approach to the delivery of new gene products in somatic gene therapy. However, the novel gene product elicited in its recipients an intense antibody response that would have curtailed the effectiveness of such therapy. The possibility of inducing tolerance to foreign gene product was explored by implanting allogeneic fibroblasts transfected with the human growth hormone gene into rat thymus, a site recently shown to be immunologically privileged and able to induce donor-specific tolerance to transplanted tissues. In the circulation of the implanted rats, human growth hormone was detected at 4-15 ng/ml serum within the first day and subsided to 0.6-9 ng/ml within the first wk in all animals implanted either thymically or intraperitoneally. Within 2-3 wk, high titers of anti-human growth hormone were detected in all animals regardless of the site of implantation. The failure of the thymus to offer immune protection for the foreign antigen was further confirmed when the animals were subsequently challenged with purified human growth hormone. An immediate twofold increase in titer within the first week of challenge was detected in animals previously implanted thymically. In contrast, animals implanted intraperitoneally but treated with short-term daily injection of cyclosporine A (28-41 days) did not mount any significant antibody response to human growth hormone throughout the experiment or even when challenged subsequently at weeks 8-10 with purified growth hormone. In conclusion, implantation of genetically modified fibroblasts in the thymus does not lead to tolerization toward soluble novel gene product secreted by these cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births. A clear etiological factor present in more than 90% of classical RTT cases is the mutation of the gene encoding methyl-CpG-binding protein 2 (MECP2). Recent work from our group was able to shown a systemic oxidative stress (OxS) in these patients that correlates with the gravity of the clinical features.Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have performed a two-dimensional gel electrophoresis in order to evidence the oxidative modifications of proteins with special focus on the formation of protein adducts with 4-hydroxynonenal (4-HNE PAs)—a major secondary product of lipid peroxidation— and Nitrotyrosine, a marker derived from the biochemical interaction of nitric oxide (NO) or nitric oxide-derived secondary products with reactive oxygen species (ROS). Then, oxidatively modified spots were identified by mass spectrometry, LC-ESI-CID-MS/MS.Our results showed that 15 protein spots presented 4-HNE PAs and/or nitrotyrosine adducts in fibroblasts proteome from RTT patients compared to healthy control cells. Post-translationally modified proteins were related to several functional categories, in particular to cytoskeleton structure and protein folding. In addition, clear upregulated expression of the inducible NO synthase (iNOS) with high nitrite levels were observed in RTT fibroblasts, justifying the increased nitrotyrosine protein modifications.The present work describes not only the proteomic profile in RTT fibroblasts, but also identifies the modified proteins by 4-HNE and nitrotyrosine. Of note, for the first time, it appears that a dysregulation of NO pathway can be associated to RTT pathophysiology. In conclusion, the evidence of a wide range of proteins able to forms adducts with 4-HNE, Nitrotyrosine or with both confirms the possible alteration of several aspects of cellular functions that well correlates to the complex clinical features of RTT patients.  相似文献   

9.
10.
11.
12.
13.
14.
Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase‐seq and histone modification ChiP‐seq data on various cell‐types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell‐types. We found a subset of the signature genes whose expression is dependent on Wnt/β‐catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415–430, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells.  相似文献   

17.
18.
19.
20.
Many endocytosed proteins in yeast travel to the vacuole, but some are recycled to the plasma membrane. We have investigated the recycling of chimeras containing green fluorescent protein (GFP) and the exocytic SNARE Snc1p. GFP-Snc1p moves from the cell surface to internal structures when Golgi function or exocytosis is blocked, suggesting continuous recycling via the Golgi. Internalization is mediated by a conserved cytoplasmic signal, whereas diversion from the vacuolar pathway requires sequences within and adjacent to the transmembrane domain. Delivery from the Golgi to the surface is also influenced by the transmembrane domain, but the requirements are much less specific. Recycling requires the syntaxins Tlg1p and Tlg2p but not Pep12p or proteins such as Vps4p and Vps5p that have been implicated in late endosome-Golgi traffic. Subtle changes to the recycling signal cause GFP-Snc1p to accumulate preferentially in punctate internal structures, although it continues to recycle to the surface. The internal GFP-Snc1p colocalizes with Tlg1p, and immunofluorescence and immunoelectron microscopy reveal structures that contain Tlg1p, Tlg2p, and Kex2p but lack Pep12p and Sec7p. We propose that these represent early endosomes in which sorting of Snc1p and late Golgi proteins occurs, and that transport can occur directly from them to the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号