首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.  相似文献   

3.
Activation of the fibroblast growth factor (FGF) receptor 3 (FGFR3) has been linked to the development of human cancers by mechanisms that are not well understood. The MUC1 oncoprotein is aberrantly overexpressed by certain hematologic malignancies and most human carcinomas. The present studies show that MUC1 associates with FGFR3. Stimulation of cells with FGF1 increased the interaction between MUC1 and FGFR3. FGF1 stimulation also induced c-Src-dependent tyrosine phosphorylation of the MUC1 cytoplasmic domain on a YEKV motif. FGF1-induced tyrosine phosphorylation of MUC1 was associated with increased binding of MUC1 to beta-catenin and targeting of MUC1 and beta-catenin to the nucleus. FGF1 also induced binding of MUC1 to the heat shock protein 90 (HSP90) chaperone by a mechanism dependent on phosphorylation of the YEKV motif. Notably, beta-catenin and HSP90 compete for binding to the MUC1 cytoplasmic domain, indicating that MUC1 forms mutually exclusive complexes with these proteins. The results also show that inhibition of HSP90 with geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin attenuates FGF1-induced binding of MUC1 to HSP90 and targeting of MUC1 to the mitochondrial outer membrane. These findings indicate that FGF1 induces phosphorylation of MUC1 on YEKV and thereby activates two distinct pathways: (a) nuclear localization of MUC1 and beta-catenin and (b) delivery of MUC1 to mitochondria by HSP90.  相似文献   

4.
5.
Fibroblast growth factors (FGF) are secreted molecules which function through the activation of specific tyrosine kinases receptors, the FGF receptors that transduce the signal by activating different pathways including the Ras/MAP kinase and the phospholipase-C gamma pathways. FGFs are involved in the regulation of many developmental processes including patterning, morphogenesis, differentiation, cell proliferation or migration. Such a diverse set of activities requires a tight control of the transduction signal which is achieved through the induction of different feedback inhibitors such as the Sproutys, Sef and MAP kinase phosphatase 3 which are responsible for the attenuation of FGF signals, limiting FGF activities in time and space.  相似文献   

6.
Cellular signaling by fibroblast growth factor receptors   总被引:20,自引:0,他引:20  
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.  相似文献   

7.
The fibroblast growth factor (FGF) regulates a broad spectrum of biological activities by activation of transmembrane FGF receptor (FGFR) tyrosine kinases and their coupled intracellular signaling pathways. FGF receptor substrate 2alpha (FRS2alpha) is an FGFR interactive adaptor protein that links multiple signaling pathways to the activated FGFR kinase. We previously showed that FGFR2 in the prostate epithelium is important for branching morphogenesis and for the acquisition of the androgen responsiveness. Here we show in mice that FRS2alpha is uniformly expressed in the epithelial cells of developing prostates, whereas it is expressed only in basal cells of the mature prostate epithelium. However, expression of FRS2alpha was apparent in luminal epithelial cells of regenerating prostates and prostate tumors. To investigate FRS2alpha function in the prostate, the Frs2alpha alleles were ablated specifically in the prostatic epithelial precursor cells during prostate development. Similar to the ablation of Fgfr2, ablation of Frs2alpha disrupted MAP kinase activation, impaired prostatic ductal branching morphogenesis and compromised cell proliferation. Unlike the Fgfr2 ablation, disrupting Frs2alpha had no effect on the response of the prostate to androgens. More importantly, ablation of Frs2alpha inhibited prostatic tumorigenesis induced by oncogenic viral proteins. The results suggest that FRS2alpha-mediated signals in prostate epithelial cells promote branching morphogenesis and proliferation, and that aberrant activation of FRS2-linked pathways might promote tumorigenesis. Thus, the prostate-specific Frs2alpha(cn) mice provide a useful animal model for scrutinizing the molecular mechanisms underlying prostatic development and tumorigenesis.  相似文献   

8.
9.
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.  相似文献   

10.
11.
Epidermal growth factor receptor signaling   总被引:5,自引:0,他引:5  
  相似文献   

12.
Basic fibroblast growth factor (FGF)-2 is important for vessel formation and/or maintenance of vascular integrity in the embryo. FGF signaling may be mediated through transmembrane tyrosine kinase receptors or directly through intracellular pathways that do not involve receptor activation. To determine the role of receptor-mediated signaling in endothelial cells, an adenovirus encoding truncated FGF receptor (FGFR)-1, under the control of the cytomegalovirus promoter, was expressed in endothelial cells. FGF signaling was impaired, as indicated by inhibition of MAPK phosphorylation. Functional consequences included inhibition of endothelial cell migration and induction of apoptosis. To address the role of endothelial FGFR signaling in vascular development, recombinant adenovirus encoding a dominant-negative FGFR was injected into the sinus venosus of embryonic day 9.0 cultured mouse embryos. Previous studies demonstrated that transgenes delivered via adenovirus, under the control of the cytomegalovirus promoter, are expressed selectively in the developing vasculature. Embryos expressing a control adenovirus developed normally, whereas those expressing the FGFR-1 mutant exhibited abnormal embryonic and extra-embryonic vascular development. These data demonstrate that FGF, by signaling through the FGFR, plays a pivotal role in the development and maintenance of a mature vascular network in the embryo.  相似文献   

13.
Expression of the cysteine-rich fibroblast growth factor (FGF) receptor (CFR) in COS-1 cells strongly inhibits the secretion of co-expressed FGF3. By using a column retention assay and affinity chromatography, we demonstrate that at physiological salt concentrations FGF3 binds with strong affinity to CFR in vivo and in vitro. Furthermore, to show that FGF3 binds to CFR in vivo, truncation mutants of CFR with changed subcellular distributions were shown to cause a similar redistribution of FGF3. Although CFR is a 150-kDa integral membrane glycoprotein that is primarily located in the Golgi apparatus, we show here that in COS-1 cells a substantial proportion of CFR is secreted. This is due to a carboxyl-terminal proteolytic cleavage that releases the intraluminal portion of the protein for secretion. However, the apparent size of the integral membrane and secreted CFR appears similar, since the loss of protein mass is balanced by a gain of complex carbohydrates. The released CFR is associated with the extracellular matrix through its affinity for glycosaminoglycans. These findings show that CFR can modulate the secretion of FGF3 and may control its biological activity by regulating its secretion.  相似文献   

14.

OBJECTIVE:

The Objective of this study was to identify the association of mutation of fibroblast growth factor receptor 1 (FGFR1), FGFR2 genes with syndromic as well as non-syndromic craniosynostosis in Indian population.

MATERIALS AND METHODS:

Retrospective analysis of our records from January 2008 to December 2012 was done. A total of 41 cases satisfying the inclusion criteria and 51 controls were taken for the study. A total volume of 3 ml blood from the patient as well as parents was taken. Deoxyribonucleic acid extracted using phenol chloroform extraction method followed by polymerase chain reaction-restriction fragment length polymorphism method.

RESULTS:

There were 33 (80.4%) non-syndromic cases of craniosynostosis while 8 (19.5%) were syndromic. Out of these 8 syndromic cases, 4 were Apert syndrome, 3 were Crouzon syndrome and 1 Pfeiffer syndrome. Phenotypically the most common non-syndromic craniosynostosis was scaphocephaly (19, 57.7%) followed by plagiocephaly in (14, 42.3%). FGFR1 mutation (Pro252Arg) was seen in 1 (2.4%) case of non-syndromic craniosynostosis while no association was noted either with FGFR1 or with FGFR2 mutation in syndromic cases. None of the control group showed any mutation.

CONCLUSION:

Our study proposed that FGFR1, FGFR2 mutation, which confers predisposition to craniosynostosis does not exist in Indian population when compared to the western world.  相似文献   

15.
Secreted proteins and membrane proteins are frequently post-translationally modified by oligosaccharides. Therefore, many glycoproteins are involved in signal transduction. One example is growth factor receptors, which are membrane proteins that often contain oligosaccharides. The oligosaccharides in those growth factor receptors play crucial roles in receptor functions. An analysis of glycosyltransferase-transfectants revealed that the branching structures of oligosaccharide also serve as important determinants. For example, N-glycans of epidermal growth factor receptor (EGFR) are involved in receptor sorting, ligand binding and dimerization. The addition of a bisecting GlcNAc to N-glycans increases the endocytosis of EGFR. N-glycans of Trk, a high affinity nerve growth factor receptor, also affect its function. Thus, oligosaccharides play an important role in growth factor signaling. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Secreted proteins and membrane proteins are frequently post-translationally modified by oligosaccharides. Therefore, many glycoproteins are involved in signal transduction. One example is growth factor receptors, which are membrane proteins that often contain oligosaccharides. The oligosaccharides in those growth factor receptors play crucial roles in receptor functions. An analysis of glycosyltransferase-transfectants revealed that the branching structures of oligosaccharide also serve as important determinants. For example, N-glycans of epidermal growth factor receptor (EGFR) are involved in receptor sorting, ligand binding and dimerization. The addition of a bisecting GlcNAc to N-glycans increases the endocytosis of EGFR. N-glycans of Trk, a high affinity nerve growth factor receptor, also affect its function. Thus, oligosaccharides play an important role in growth factor signaling.  相似文献   

17.
Epidermal growth factor (EGF) regulates normal and tumor cell proliferation via epidermal growth factor receptor (EGFR) phosphorylation, homo- or heterodimerization and activation of mitogen-activated protein kinases (MAPKs) and PI3K/AKT cell survival pathways. In contrast, SST via activation of five different receptor subtypes inhibits cell proliferation and has been potential target in tumor treatment. To gain further insight for the effect of SSTRs on EGFR activated signaling, we determine the role of SSTR1 and SSTR1/5 in human embryonic kidney (HEK) 293 cells. We here demonstrate that cells transfected with SSTR1 or SSTR1/5 negatively regulates EGF mediated effects attributed to the inhibition of EGFR phosphorylation, MAPKs as well as the cell survival signaling. Furthermore, SSTR effects were significantly enhanced in cells when EGFR was knock down using siRNA or treated with selective antagonist (AG1478). Most importantly, the presence of SSTR in addition to modulating signaling pathways leads to the dissociation of the constitutive and EGF induced heteromeric complex of EGFR/ErbB2. Furthermore, cells cotransfected with SSTR1/5 display pronounced effect of SST on the signaling and dissociation of the EGFR/ErbB2 heteromeric complex than the cells expressing SSTR1 alone. Taken together this study provides the first evidence that the presence of SSTR controls EGF mediated cell survival pathway via dissociation of ErbB heteromeric complex. We propose that the activation of SSTR and blockade of EGFR might serve novel therapeutic approach in inhibition of tumor proliferation.  相似文献   

18.
Ligand-dependent signalling pathways have been characterised as having morphogen properties where there is a quantitative relationship between receptor activation and response, or threshold characteristics in which there is a binary switch in response at a fixed level of receptor activation. Here we report the use of a bacterial artificial chromosome (BAC)-based transgenic system in which a hypermorphic mutation has been introduced into the murine Fgfr1 gene. These mice exhibit cranial suture and sternal fusions that are exacerbated when the BAC copy number is increased. Surprisingly, increasing mutant BAC copy number also leads to the de novo appearance of digit I polydactyly in the hind limb and transformations of the vertebrae. Polydactyly is accompanied by a reduction of programmed cell death in the developing hind limb. Candidate gene analysis reveals downregulation of Dkk1 in the digit I field and upregulation of Wnt5a and Hoxd13. These findings show that Fgfr1-mediated developmental pathways exhibit differing signalling dynamics, whereby development of the cranial sutures and sternum follows a morphogen mode, whereas development of the vertebral column and the hind limbs has threshold signalling properties.  相似文献   

19.
Signal transduction by tyrosine kinase growth factor receptors involves ligand-induced phosphorylation of substrates for the kinase, resulting in mediation of common or receptor-specific biological signals. We have compared signal transduction pathways for the fibroblast growth factor receptor-1 (FGFR-1), the platelet-derived growth factor beta-receptor (PDGFR-beta), and a chimeric FGFR-1 molecule, FGFRchim, in which the FGFR-1 kinase insert was replaced with that of the PDGFR-beta. The different receptors were characterized and found to be functional as ligand-stimulatable kinases, after expression of the respective human cDNAs in porcine aortic endothelial cells. Substrates for the receptors were analyzed by ligand stimulation of [32P]orthophosphate-labeled cells and immunoprecipitation with phosphotyrosine antiserum. A number of phosphoproteins were induced in all the different types of cells, but components specifically induced after stimulation of FGFR-1 and PDGFR-beta expressing cells could also be detected. Examination of receptor-associated substrates by in vitro kinase assays revealed phosphoproteins of 65 and 85 kDa, which were associated with PDGFR-beta and FGFRchim, but not with FGFR-1. The 85-kDa phosphoprotein could correspond to the regulatory subunit of phosphatidylinositol 3' kinase (PI3-K), since phosphatidylinositol 3' kinase activity was detected after ligand stimulation of FGFRchim- and PDGFR-beta- but not FGFR-1-expressing cells. In addition, ligand stimulation of FGFRchim- and PDGFR-beta-expressing cells, but not FGFR-1-expressing cells, led to induction of actin reorganization in the form of circular membrane ruffling. Thus, replacement of a discrete segment of the intracellular domain of the FGFR-1 with the corresponding stretch from the PDGFR-beta resulted in transfer of PDGFR-beta-specific signaling properties to the chimeric molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号