首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are thought to mediate the biogenesis of multivesicular endosomes (MVEs) and endosomal sorting of ubiquitinated membrane proteins. Here, we have compared the importance of the ESCRT-I subunit tumor susceptibility gene 101 (Tsg101) and the ESCRT-III subunit hVps24/CHMP3 for endosomal functions and receptor signaling. Like Tsg101, endogenous hVps24 localized mainly to late endosomes. Depletion of hVps24 by siRNA showed that this ESCRT subunit, like Tsg101, is important for degradation of the epidermal growth factor (EGF) receptor (EGFR) and for transport of the receptor from early endosomes to lysosomes. Surprisingly, however, whereas depletion of Tsg101 caused sustained EGF activation of the mitogen-activated protein kinase pathway, depletion of hVps24 had no such effect. Moreover, depletion of Tsg101 but not of hVps24 caused a major fraction of internalized EGF to accumulate in nonacidified endosomes. Electron microscopy of hVps24-depleted cells showed an accumulation of EGFRs in MVEs that were significantly smaller than those in control cells, probably because of an impaired fusion with lyso-bisphosphatidic acid-positive late endosomes/lysosomes. Together, our results reveal functional differences between ESCRT-I and ESCRT-III in degradative protein trafficking and indicate that degradation of the EGFR is not required for termination of its signaling.  相似文献   

2.
Like other enveloped viruses, vesicular stomatitis virus infects cells through endosomes. There, the viral envelope undergoes fusion with endosomal membranes, thereby releasing the nucleocapsid into the cytoplasm and allowing infection to proceed. Previously, we reported that the viral envelope fuses preferentially with the membrane of vesicles present within multivesicular endosomes. Then, these intra-endosomal vesicles (containing nucleocapsids) are transported to late endosomes, where back-fusion with the endosome limiting membrane delivers the nucleocapsid into the cytoplasm. In this study, we show that the tumor susceptibility gene 101 (Tsg101) subunit of the endosomal sorting complexes required for transport (ESCRT)-I complex, which mediates receptor sorting into multivesicular endosomes, is dispensable for viral envelope fusion with endosomal membranes and viral RNA transport to late endosomes but is necessary for infection. Our data indicate that Tsg101, in contrast to the ESCRT-0 component Hrs, plays a direct role in nucleocapsid release from within multivesicular endosomes to the cytoplasm, presumably by controlling the back-fusion process. We conclude that Tsg101, through selective interactions with its partners including Hrs and Alix, may link receptor sorting and lysosome targeting to the back-fusion process involved in viral capsid release.  相似文献   

3.
The biogenesis of multivesicular bodies and endosomal sorting of membrane cargo are driven forward by the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III. ESCRT-I is characterized in yeast as a complex consisting of Vps23, Vps28, and Vps37. Whereas mammalian homologues of Vps23 and Vps28 (named Tsg101 and hVps28, respectively) have been identified and characterized, a mammalian counterpart of Vps37 has not yet been identified. Here, we show that a regulator of proliferation, hepatocellular carcinoma related protein 1 (HCRP1), interacts with Tsg101, hVps28, and their upstream regulator Hrs. The ability of HCRP1 (which we assign the alternative name hVps37A) to interact with Tsg101 is conferred by its mod(r) domain and is shared with hVps37B and hVps37C, two other mod(r) domain-containing proteins. HCRP1 cofractionates with Tsg101 and hVps28 by size exclusion chromatography and colocalizes with hVps28 on LAMP1-positive endosomes. Whereas depletion of Tsg101 by siRNA reduces cellular levels of both hVps28 and HCRP1, depletion of HCRP1 has no effect on Tsg101 or hVps28. Nevertheless, HCRP1 depletion strongly retards epidermal growth factor (EGF) receptor degradation. Together, these results indicate that HCRP1 is a subunit of mammalian ESCRT-I and that its function is essential for lysosomal sorting of EGF receptors.  相似文献   

4.
A ubiquitin-binding endosomal protein machinery is responsible for sorting endocytosed membrane proteins into intraluminal vesicles of multivesicular endosomes (MVEs) for subsequent degradation in lysosomes. The Hrs-STAM complex and endosomal sorting complex required for transport (ESCRT)-I, -II and -III are central components of this machinery. Here, we have performed a systematic analysis of their importance in four trafficking pathways through endosomes. Neither Hrs, Tsg101 (ESCRT-I), Vps22/EAP30 (ESCRT-II), nor Vps24/CHMP3 (ESCRT-III) was required for ligand-mediated internalization of epidermal growth factor (EGF) receptors (EGFRs) or for recycling of cation-independent mannose 6-phosphate receptors (CI-M6PRs) from endosomes to the trans-Golgi network (TGN). In contrast, both Hrs and ESCRT subunits were equally required for degradation of both endocytosed EGF and EGFR. Whereas depletion of Hrs or Tsg101 caused enhanced recycling of endocytosed EGFRs, this was not the case with depletion of Vps22 or Vps24. Depletion of Vps24 instead caused a strong increase in the levels of CI-M6PRs and a dramatic redistribution of the Golgi and the TGN. These results indicate that, although Hrs-STAM and ESCRT-I, -II and -III have a common function in degradative protein sorting, they play differential roles in other trafficking pathways, probably reflecting their functions at distinct stages of the endocytic pathway.  相似文献   

5.
Endosomal sorting complex required for transport-I (ESCRT-I) is one of three defined protein complexes in the class E vacuolar protein sorting (VPS) pathway required for the sorting of ubiquitinated transmembrane proteins into internal vesicles of multivesicular bodies. In yeast, ESCRT-I is composed of three proteins, VSP23, VPS28, and VPS37, whereas in mammals only Tsg101(VPS23) and VPS28 were originally identified as ESCRT-I components. Using yeast two-hybrid screens, we identified one of a family of human proteins (VPS37C) as a Tsg101-binding protein. VPS37C can form a ternary complex with Tsg101 and VPS28 by binding to a domain situated toward the carboxyl terminus of Tsg101 and binds to another class E VPS factor, namely Hrs. In addition, VPS37C is recruited to aberrant endosomes induced by overexpression of Tsg101, Hrs, or dominant negative form of the class E VPS ATPase, VPS4. Enveloped viruses that encode PTAP motifs to facilitate budding exploit ESCRT-I as an interface with the class E VPS pathway, and accordingly, VPS37C is recruited to the plasma membrane along with Tsg101 by human immunodeficiency virus, type 1 (HIV-1) Gag. Moreover, direct fusion of VPS37C to HIV-1 Gag obviates the requirement for a PTAP motif to induce virion release. Depletion of VPS37C from cells does not inhibit murine leukemia virus budding, which is not mediated by ESCRT-I, however, if murine leukemia virus budding is engineered to be ESCRT-I-dependent, then it is inhibited by VPS37C depletion, and this inhibition is accentuated if VPS37B is simultaneously depleted. Thus, this study identifies VPS37C as a functional component of mammalian ESCRT-I.  相似文献   

6.
The ubiquitin-binding protein Hrs and endosomal sorting complex required for transport (ESCRT)-I and ESCRT-III are involved in sorting endocytosed and ubiquitinated receptors to lysosomes for degradation and efficient termination of signaling. In this study, we have investigated the role of the ESCRT-II subunit Vps22/EAP30 in degradative protein sorting of ubiquitinated receptors. Vps22 transiently expressed in HeLa cells was detected in endosomes containing endocytosed epidermal growth factor receptors (EGFRs) as well as Hrs and ESCRT-I and ESCRT-III. Depletion of Vps22 by small interfering RNA, which was accompanied by decreased levels of other ESCRT-II subunits, greatly reduced degradation of EGFR and its ligand EGF as well as the chemokine receptor CXCR4. EGFR accumulated on the limiting membranes of early endosomes and aberrantly small multivesicular bodies in Vps22-depleted cells. Phosphorylation and nuclear translocation of extracellular-signal-regulated kinase1/2 downstream of the EGF-activated receptor were sustained by depletion of Hrs or the ESCRT-I subunit Tsg101. In contrast, this was not the case when Vps22 was depleted. These results indicate an important role for Vps22 in ligand-induced EGFR and CXCR4 turnover and suggest that termination of EGF signaling occurs prior to ESCRT-II engagement.  相似文献   

7.
The reproducible pattern of organismal growth during metazoan development is the product of genetically controlled signaling pathways. Patterned activation of these pathways shapes developing organs and dictates overall organismal shape and size. Here, we show that patches of tissue that are mutant for the Drosophila Tsg101 ortholog, erupted, cause dramatic overproliferation of adjacent wild-type tissue. Tsg101 proteins function in endosomal sorting and are required to incorporate late endosomes into multivesicular bodies. Drosophila cells with impaired Tsg101 function show accumulation of the Notch receptor in intracellular compartments marked by the endosomal protein Hrs. This causes increased Notch-mediated signaling and ectopic expression of the Notch target gene unpaired (upd), which encodes the secreted ligand of the JAK-STAT pathway. Activation of JAK-STAT signaling in surrounding wild-type cells correlates with their overgrowth. These findings define a pathway by which changes in endocytic trafficking can regulate tissue growth in a non-cell-autonomous manner.  相似文献   

8.
Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.  相似文献   

9.
HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein   总被引:14,自引:0,他引:14  
The HIV-1 Gag protein recruits the cellular factor Tsg101 to facilitate the final stages of virus budding. A conserved P(S/T)AP tetrapeptide motif within Gag (the "late domain") binds directly to the NH2-terminal ubiquitin E2 variant (UEV) domain of Tsg101. In the cell, Tsg101 is required for biogenesis of vesicles that bud into the lumen of late endosomal compartments called multivesicular bodies (MVBs). However, the mechanism by which Tsg101 is recruited from the cytoplasm onto the endosomal membrane has not been known. Now, we report that Tsg101 binds the COOH-terminal region of the endosomal protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs; residues 222-777). This interaction is mediated, in part, by binding of the Tsg101 UEV domain to the Hrs 348PSAP351 motif. Importantly, Hrs222-777 can recruit Tsg101 and rescue the budding of virus-like Gag particles that are missing native late domains. These observations indicate that Hrs normally functions to recruit Tsg101 to the endosomal membrane. HIV-1 Gag apparently mimics this Hrs activity, and thereby usurps Tsg101 and other components of the MVB vesicle fission machinery to facilitate viral budding.  相似文献   

10.
Ligand-mediated lysosomal degradation of growth factor receptors, mediated by the endosomal sorting complex required for transport (ESCRT) machinery, is a mechanism that attenuates the cellular response to growth factors. In this article, we present a novel regulatory mechanism that involves ligand-mediated degradation of a key component of the sorting machinery itself. We have investigated the endosomal localization of subunits of the four ESCRTs-Hrs (ESCRT-0), Tsg101 (ESCRT-I), EAP30/Vps22 (ESCRT-II) and charged multivesicular body protein 3/Vps24 (ESCRT-III). All the components were detected on the limiting membrane of multivesicular endosomes (MVEs). Surprisingly, however, Tsg101 and other ESCRT-I subunits were also detected within intraluminal vesicles (ILVs) of MVEs. Tsg101 was sequestered along with cargo during endosomal sorting into ILVs and further degraded in lysosomes. Importantly, ESCRT-mediated downregulation of two distinct cargoes, epidermal growth factor receptor (EGFR) and connexin43, mutually made cells refractory to degradation of the other cargo. Our observations indicate that the degradation of a key ESCRT component along with cargo represents a novel feedback control of endosomal sorting by preventing collateral degradation of cell surface receptors following stimulation of one specific pathway.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) Gag protein recruits Tsg101 to facilitate HIV-1 particle budding and release. In uninfected cells, the Hrs protein recruits the ESCRT-I complex to the endosome, also through an interaction with Tsg101, to promote the sorting of host proteins into endosomal vesicles and multivesicular bodies. Here, we show that the overexpression of the C-terminal fragment of Hrs (residues 391 to 777) or Hrs mutants lacking either the N-terminal FYVE domain (mutant dFYVE) or the PSAP (residues 348 to 351) motif (mutant ASAA) all efficiently inhibit HIV-1 Gag particle production. Expression of the dFYVE or ASAA mutants of Hrs had no effect on the release of Moloney murine leukemia virus. Coimmunoprecipitation analysis showed that the expression of Hrs mutant dFYVE or ASAA significantly reduced or abolished the HIV-1 Gag-Tsg101 interaction. Yeast-two hybrid assays were used to identify two new and independent Tsg101 binding sites, one in the Hrs coiled-coil domain and one in the proline/glutamic acid-rich domain. Scanning electron microscopy of HeLa cells expressing HIV-1 Gag and the Hrs ASAA mutant showed viral particles arrested in "lump-like" structures that remained attached to the cell surface. Together, these data indicate that fragments of Hrs containing the C-terminal portion of the protein can potently inhibit HIV-1 particle release by efficiently sequestering Tsg101 away from the Gag polyprotein.  相似文献   

12.
In mammalian cells, epidermal growth factor (EGF) stimulation promotes multivesicular body (MVB) formation and inward vesiculation within MVB. Annexin 1 is required for EGF-stimulated inward vesiculation but not MVB formation, demonstrating that MVB formation (the number of MVBs/unit cytoplasm) and inward vesiculation (the number of internal vesicles/MVB) are regulated by different mechanisms. Here, we show that EGF-stimulated MVB formation requires the tumor susceptibility gene, Tsg101, a component of the ESCRT (endosomal sorting complex required for transport) machinery. Depletion of Tsg101 potently inhibits EGF degradation and MVB formation and causes the vacuolar domains of the early endosome to tubulate. Although Tsg101 depletion inhibits MVB formation and alters the morphology of the early endosome in unstimulated cells, these effects are much greater after EGF stimulation. In contrast, depletion of hepatocyte growth factor receptor substrate (Hrs) only modestly inhibits EGF degradation, does not induce tubulation of the early endosome, and causes the generation of enlarged MVBs that retain the ability to fuse with the lysosome. Together, these results indicate that Tsg101 is required for the formation of stable vacuolar domains within the early endosome that develop into MVBs and Hrs is required for the accumulation of internal vesicles within MVBs and that both these processes are up-regulated by EGF stimulation.  相似文献   

13.
Proteins that constitute the endosomal sorting complex required for transport (ESCRT) are necessary for the sorting of proteins into multivesicular bodies (MVBs) and the budding of several enveloped viruses, including HIV-1. The first of these complexes, ESCRT-I, consists of three proteins: Vps28p, Vps37p, and Vps23p or Tsg101 in mammals. Here, we characterize a mutation in the Drosophila homolog of vps28. The dVps28 gene is essential: homozygous mutants die at the transition from the first to second instar. Removal of maternally contributed dVps28 causes early embryonic lethality. In such embryos lacking dVps28, several processes that require the actin cytoskeleton are perturbed, including axial migration of nuclei, formation of transient furrows during cortical divisions in syncytial embryos, and the subsequent cellularization. Defects in actin cytoskeleton organization also become apparent during sperm individualization in dVps28 mutant testis. Because dVps28 mutant cells contained MVBs, these defects are unlikely to be a secondary consequence of disrupted MVB formation and suggest an interaction between the actin cytoskeleton and endosomal membranes in Drosophila embryos earlier than previously appreciated.  相似文献   

14.
Protein sorting into multivesicular endosomes   总被引:30,自引:0,他引:30  
Multivesicular endosomes are important as compartments for receptor downregulation and as intermediates in the formation of secretory lysosomes. Work during the past year has shed light on the molecular mechanisms of protein sorting into multivesicular endosomes and yielded information about the machinery involved in multivesicular endosome formation. Monoubiquitination functions as a signal for sorting transmembrane proteins into intraluminal vesicles of multivesicular endosomes and subsequent delivery to lysosomes. A molecular machinery that contains the ubiquitin-binding protein Hrs/Vps27 appears to be central in this sorting process. Three conserved multisubunit complexes, ESCRT-I, -II and -III, are essential for both sorting and multivesicular endosomes formation. Enveloped RNA viruses such as HIV can redirect these complexes from multivesicular endosomes to the plasma membrane to facilitate viral budding.  相似文献   

15.
Vps27 recruits ESCRT machinery to endosomes during MVB sorting   总被引:1,自引:0,他引:1  
Down-regulation (degradation) of cell surface proteins within the lysosomal lumen depends on the function of the multivesicular body (MVB) sorting pathway. The function of this pathway requires the class E vacuolar protein sorting (Vps) proteins. Of the class E Vps proteins, both the ESCRT-I complex (composed of the class E proteins Vps23, 28, and 37) and Vps27 (mammalian hepatocyte receptor tyrosine kinase substrate, Hrs) have been shown to interact with ubiquitin, a signal for entry into the MVB pathway. We demonstrate that activation of the MVB sorting reaction is dictated largely through interactions between Vps27 and the endosomally enriched lipid species phosphatidylinositol 3-phosphate via the FYVE domain (Fab1, YGL023, Vps27, and EEA1) of Vps27. ESCRT-I then physically binds to Vps27 on endosomal membranes via a domain within the COOH terminus of Vps27. A peptide sequence in this domain, PTVP, is involved in the function of Vps27 in the MVB pathway, the efficient endosomal recruitment of ESCRT-I, and is related to a motif in HIV-1 Gag protein that is capable of interacting with Tsg101, the mammalian homologue of Vps23. We propose that compartmental specificity for the MVB sorting reaction is the result of interactions of Vps27 with phosphatidylinositol 3-phosphate and ubiquitin. Vps27 subsequently recruits/activates ESCRT-I on endosomes, thereby facilitating sorting of ubiquitinated MVB cargoes.  相似文献   

16.
The ubiquitin ligase SCFTrCP is required for internalisation of the growth hormone receptor (GHR) and acts via a direct interaction with the ubiquitin-dependent endocytosis motif. Details of how the ligase communicates its information to the clathrin-mediated internalisation machinery are unknown. For the EGF receptor, c-Cbl acts both at the cell surface and in endosomes. We hypothesised that SCFTrCP is required for GHR degradation at both sites. This was tested by truncating GHR after a di-leucine-based internalisation motif (GHR349). This receptor enters the cells via the adapter complex AP2. We show that TrCP acts in an early stage of cargo selection: both TrCP silencing and mutation of the ubiquitin-dependent endocytosis motif force the GHR to recycle between endosomes and the plasma membrane, together with the transferrin receptor. Depletion of Tsg101 (ESCRT-I) has the same effect, while silencing of Hrs (ESCRT-0) prevents GH recycling. GH passes through late endosomal vesicles, marked by Lamp1. Coexpressing GHR and EGFR demonstrates that both receptors use the same route to the lysosomes. We show for the first time that SCFTrCP is involved in cargo-specific sorting at endosomes and that Tsg101 rather than Hrs might direct the cargo into the ESCRT machinery.  相似文献   

17.
The ubiquitin ligase SCF(TrCP) is required for internalisation of the growth hormone receptor (GHR) and acts via a direct interaction with the ubiquitin-dependent endocytosis motif. Details of how the ligase communicates its information to the clathrin-mediated internalisation machinery are unknown. For the EGF receptor, c-Cbl acts both at the cell surface and in endosomes. We hypothesised that SCF(TrCP) is required for GHR degradation at both sites. This was tested by truncating GHR after a di-leucine-based internalisation motif (GHR349). This receptor enters the cells via the adapter complex AP2. We show that TrCP acts in an early stage of cargo selection: both TrCP silencing and mutation of the ubiquitin-dependent endocytosis motif force the GHR to recycle between endosomes and the plasma membrane, together with the transferrin receptor. Depletion of Tsg101 (ESCRT-I) has the same effect, while silencing of Hrs (ESCRT-0) prevents GH recycling. GH passes through late endosomal vesicles, marked by Lamp1. Coexpressing GHR and EGFR demonstrates that both receptors use the same route to the lysosomes. We show for the first time that SCF(TrCP) is involved in cargo-specific sorting at endosomes and that Tsg101 rather than Hrs might direct the cargo into the ESCRT machinery.  相似文献   

18.
After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs—an adaptor-like protein that binds membrane PtdIns3P via a FYVE motif—and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.  相似文献   

19.
The trafficking of endocytosed receptors through phosphatidylinositol 3-phosphate [PtdIns(3)P]-containing endosomes is thought to attenuate their signaling. Here, we show that the PtdIns(3)P 5-kinase Fab1/PIKfyve controls trafficking but not silencing of endocytosed receptors. Drosophila fab1 mutants contain undetectable phosphatidylinositol 3,5-bisphosphate levels, show profound increases in cell and organ size, and die at the pupal stage. Mutant larvae contain highly enlarged multivesicular bodies and late endosomes that are inefficiently acidified. Clones of fab1 mutant cells accumulate Wingless and Notch, similarly to cells lacking Hrs, Vps25, and Tsg101, components of the endosomal sorting machinery for ubiquitinated membrane proteins. However, whereas hrs, vps25, and tsg101 mutant cell clones accumulate ubiquitinated cargo, this is not the case with fab1 mutants. Even though endocytic receptor trafficking is impaired in fab1 mutants, Notch, Wingless, and Dpp signaling is unaffected. We conclude that Fab1, despite its importance for endosomal functions, is not required for receptor silencing. This is consistent with the possibility that Fab1 functions at a late stage in endocytic receptor trafficking, at a point when signal termination has occurred.  相似文献   

20.
The sorting of transmembrane cargo proteins into the lumenal vesicles of multivesicular bodies (MVBs) depends on the recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomal membranes. The subsequent dissociation of ESCRT complexes from endosomes requires Vps4, a member of the AAA family of adenosine triphosphatases. We show that Did2 directs Vps4 activity to the dissociation of ESCRT-III but has no role in the dissociation of ESCRT-I or -II. Surprisingly, vesicle budding into the endosome lumen occurs in the absence of Did2 function even though Did2 is required for the efficient sorting of MVB cargo proteins into lumenal vesicles. This uncoupling of MVB cargo sorting and lumenal vesicle formation suggests that the Vps4-mediated dissociation of ESCRT-III is an essential step in the sorting of cargo proteins into MVB vesicles but is not a prerequisite for the budding of vesicles into the endosome lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号