首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Intrinsically disordered proteins, proteins that do not have a well-defined three-dimensional structure, make up a significant proportion of our proteome and are particularly prevalent in signaling and regulation. Although their importance has been realized for two decades, there is a lack of high-resolution experimental data. Molecular dynamics simulations have been crucial in reaching our current understanding of the dynamical structural ensemble sampled by intrinsically disordered proteins. In this review, we discuss enhanced sampling simulation methods that are particularly suitable to characterize the structural ensemble, along with examples of applications and limitations. The dynamics within the ensemble can be rigorously analyzed using Markov state models. We discuss recent developments that make Markov state modeling a viable approach for studying intrinsically disordered proteins. Finally, we briefly discuss challenges and future directions when applying molecular dynamics simulations to study intrinsically disordered proteins.  相似文献   

3.
4.
SV-IV (seminal vesicle protein no. 4) is a potent immunomodulatory and anti-inflammatory secretory protein (Mr 9758) produced in large amounts by the rat seminal vesicle epithelium. Here we show that this protein possesses the ability to upregulate in J774 macrophages the expression of the gene coding for the inducible nitric oxide synthase (iNOS). The increase in NO production consequent on the marked enhancement of iNOS activity was not associated with apoptotic damage of the SV-IV-treated cells. In the same experimental model, however, LPS induced upregulation of iNOS coupled with an increase in NO production and marked apoptotic death. Differences in the ability of SV-IV and LPS to control the life/ death signal balance in target cells via trans-membrane activation of apoptotic (mediated by TNF-alpha and NO/iNOS system) and anti-apoptotic (mediated by bcl-2, c-myc, etc.) pathways are suggested to be the basis of the apoptotic fate of the experimentally treated cells. In addition, considering the important role played by NO in the process of mammalian reproduction, SV-IV may be involved in the fine tuning of NO concentration in the female genital tract mucosa via an SV-IV-mediated control of iNOS gene expression in local macrophages.  相似文献   

5.
In this study we show that SV-IV, a major immunomodulatory, anti-inflammatory, and sperm immunoprotective protein secreted from the rat seminal vesicle epithelium, acts in vitro as a substrate of protein kinase C (PKC) competing efficiently with H1 histone, a very well known PKC substrate. Electrospray mass spectrometry (ES-MS) analysis demonstrated that approximately 10% of the native SV-IV molecules were phosphorylated by PKC and that such a modification involved only a single serine residue (Ser58) out of the 22 occurring in the protein. Interestingly, this modification produced a substantial enhancement (approximately 50%) of the native SV-IV's ability to stimulate the activity of both horseradish peroxidase (POD) and selenium-dependent glutathione peroxidase (GPX), an enzyme that is known to protect the mammalian spermatozoa from oxidative stress and loss of motility in the female genital tract following ejaculation. In contrast, the phosphorylation of SV-IV on Ser58 did not produce any effect on the anti-inflammatory properties of SV-IV, as measured by its ability to inhibit the phospholipase A2.  相似文献   

6.
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.  相似文献   

7.

Background  

Predicting intrinsically disordered proteins is important in structural biology because they are thought to carry out various cellular functions even though they have no stable three-dimensional structure. We know the structures of far more ordered proteins than disordered proteins. The structural distribution of proteins in nature can therefore be inferred to differ from that of proteins whose structures have been determined experimentally. We know many more protein sequences than we do protein structures, and many of the known sequences can be expected to be those of disordered proteins. Thus it would be efficient to use the information of structure-unknown proteins in order to avoid training data sparseness. We propose a novel method for predicting which proteins are mostly disordered by using spectral graph transducer and training with a huge amount of structure-unknown sequences as well as structure-known sequences.  相似文献   

8.
《Biophysical journal》2021,120(22):4992-5004
Albino3 (Alb3) is an integral membrane protein fundamental to the targeting and insertion of light-harvesting complex (LHC) proteins into the thylakoid membrane. Alb3 contains a stroma-exposed C-terminus (Alb3-Cterm) that is responsible for binding the LHC-loaded transit complex before LHC membrane insertion. Alb3-Cterm has been reported to be intrinsically disordered, but precise mechanistic details underlying how it recognizes and binds to the transit complex are lacking, and the functional roles of its four different motifs have been debated. Using a novel combination of experimental and computational techniques such as single-molecule fluorescence resonance energy transfer, circular dichroism with deconvolution analysis, site-directed mutagenesis, trypsin digestion assays, and all-atom molecular dynamics simulations in conjunction with enhanced sampling techniques, we show that Alb3-Cterm contains transient secondary structure in motifs I and II. The excellent agreement between the experimental and computational data provides a quantitatively consistent picture and allows us to identify a heterogeneous structural ensemble that highlights the local and transient nature of the secondary structure. This structural ensemble was used to predict both the inter-residue distance distributions of single molecules and the apparent unfolding free energy of the transient secondary structure, which were both in excellent agreement with those determined experimentally. We hypothesize that this transient local secondary structure may play an important role in the recognition of Alb3-Cterm for the LHC-loaded transit complex, and these results should provide a framework to better understand protein targeting by the Alb3-Oxa1-YidC family of insertases.  相似文献   

9.
Protein disorder is predicted to be widespread in eukaryotic proteomes, although direct experimental evidence is rather limited so far. To fill this gap and to unveil the identity of novel intrinsically disordered proteins (IDPs), proteomic methods that combine 2D electrophoresis with mass spectrometry have been developed. Here, we applied the method developed in our laboratory [ Csizmok et al., Mol. Cell. Proteomics 2006, 5, 265- 273 ] to the proteome of Drosophila melanogaster. Protein Df31, earlier described as a histone chaperone involved in chromatin decondensation and stabilization, was among the IDPs identified. Despite some hints at the unusual structural behavior of Df31, this protein has not yet been structurally characterized. Here, we provide evidence by a variety of techniques such as CD, NMR, gel-filtration, limited proteolyzsis and bioinformatics that Df31 is intrinsically disordered along its entire length. Further, by chemical cross-linking, we provide evidence that it is a monomeric protein, and suggest that its function(s) may benefit from having an extended and highly flexible structural state. The potential functional advantages and the generality of protein disorder among chromatin organizing proteins are discussed in detail. Finally, we also would like to point out the utility of our 2DE/MS technique for discoveringor, as a matter of fact, rediscoveringIDPs even from the complicated proteome of an advanced eukaryote.  相似文献   

10.
Collapse of unfolded protein chains is an early event in folding. It affects structural properties of intrinsically disordered proteins, which take a considerable fraction of the human proteome. Collapse is generally believed to be driven by hydrophobic forces imposed by the presence of nonpolar amino acid side chains. Contributions from backbone hydrogen bonds to protein folding and stability, however, are controversial. To date, the experimental dissection of side-chain and backbone contributions has not yet been achieved because both types of interactions are integral parts of protein structure. Here, we realized this goal by applying mutagenesis and chemical modification on a set of disordered peptides and proteins. We measured the protein dimensions and kinetics of intra-chain diffusion of modified polypeptides at the level of individual molecules using fluorescence correlation spectroscopy, thereby avoiding artifacts commonly caused by aggregation of unfolded protein material in bulk. We found no contributions from side chains to collapse but, instead, identified backbone interactions as a source sufficient to form globules of native-like dimensions. The presence of backbone hydrogen bonds decreased polypeptide water solubility dramatically and accelerated the nanosecond kinetics of loop closure, in agreement with recent predictions from computer simulation. The presence of side chains, instead, slowed loop closure and modulated the dimensions of intrinsically disordered domains. It appeared that the transient formation of backbone interactions facilitates the diffusive search for productive conformations at the early stage of folding and within intrinsically disordered proteins.  相似文献   

11.
The recent revolution in computational protein structure prediction provides folding models for entire proteomes, which can now be integrated with large-scale experimental data. Mass spectrometry (MS)-based proteomics has identified and quantified tens of thousands of posttranslational modifications (PTMs), most of them of uncertain functional relevance. In this study, we determine the structural context of these PTMs and investigate how this information can be leveraged to pinpoint potential regulatory sites. Our analysis uncovers global patterns of PTM occurrence across folded and intrinsically disordered regions. We found that this information can help to distinguish regulatory PTMs from those marking improperly folded proteins. Interestingly, the human proteome contains thousands of proteins that have large folded domains linked by short, disordered regions that are strongly enriched in regulatory phosphosites. These include well-known kinase activation loops that induce protein conformational changes upon phosphorylation. This regulatory mechanism appears to be widespread in kinases but also occurs in other protein families such as solute carriers. It is not limited to phosphorylation but includes ubiquitination and acetylation sites as well. Furthermore, we performed three-dimensional proximity analysis, which revealed examples of spatial coregulation of different PTM types and potential PTM crosstalk. To enable the community to build upon these first analyses, we provide tools for 3D visualization of proteomics data and PTMs as well as python libraries for data accession and processing.

A combination of the comprehensive structural predictions of AlphaFold2 and large-scale proteomics data on post-translational modifications (PTMs) reveals novel insights into the functional importance of PTMs, based on their structural context.  相似文献   

12.
The synucleins are a family of intrinsically disordered proteins involved in various human diseases. alpha-Synuclein has been extensively characterized due to its role in Parkinson's disease where it forms intracellular aggregates, while gamma-synuclein is overexpressed in a majority of late-stage breast cancers. Despite fairly strong sequence similarity between the amyloid-forming regions of alpha- and gamma-synuclein, gamma-synuclein has only a weak propensity to form amyloid fibrils. We hypothesize that the different fibrillation tendencies of alpha- and gamma-synuclein may be related to differences in structural propensities. Here we have measured chemical shifts for gamma-synuclein and compared them to previously published shifts for alpha-synuclein. In order to facilitate direct comparison, we have implemented a simple new technique for re-referencing chemical shifts that we have found to be highly effective for both disordered and folded proteins. In addition, we have developed a new method that combines different chemical shifts into a single residue-specific secondary structure propensity (SSP) score. We observe significant differences between alpha- and gamma-synuclein secondary structure propensities. Most interestingly, gamma-synuclein has an increased alpha-helical propensity in the amyloid-forming region that is critical for alpha-synuclein fibrillation, suggesting that increased structural stability in this region may protect against gamma-synuclein aggregation. This comparison of residue-specific secondary structure propensities between intrinsically disordered homologs highlights the sensitivity of transient structure to sequence changes, which we suggest may have been exploited as an evolutionary mechanism for fast modulation of protein structure and, hence, function.  相似文献   

13.
Eukaryotic proteasome assembly is a highly organized process mediated by several proteasome-specific chaperones, which interact with proteasome assembly intermediates. In yeast, Ump1 and Pba1-4 have been identified as assembly chaperones that are dedicated to the formation of the proteasome 20S catalytic core complex. The crystal structures of Pba chaperones have been reported previously, but no detailed information has been provided for the structure of Ump1. Thus, to better understand the mechanisms underlying Ump1-mediated proteasome assembly, we characterized the conformation of Ump1 in solution using NMR. Backbone chemical shift data indicated that Ump1 is an intrinsically unstructured protein and largely devoid of secondary structural elements.  相似文献   

14.
The roles of unfolded states of proteins in normal folding and in diseases involving aggregation, as well as the prevalence and regulatory functions of intrinsically disordered proteins, have become increasingly recognized. The structural representation of these disordered states as ensembles of interconverting conformers can therefore provide critical insights. Experimental methods can be used to probe ensemble-averaged structural properties of disordered states and computational approaches generate representative ensembles of conformers using experimental restraints. In particular, NMR and small-angle X-ray scattering provide quantitative data that can readily be incorporated into calculations. These techniques have gleaned structural information about denatured, unfolded and intrinsically disordered proteins. The use of experimental data in different computational approaches, including ensemble molecular dynamics simulations and algorithms that assign populations to pregenerated conformers, has highlighted the presence of both local and long-range structure, and the occurrence of native-like and non-native interactions in unfolded and denatured states. Analysis of the resulting ensembles has suggested important implications of this fluctuating structure for folding, aggregation and binding.  相似文献   

15.
While cryo-electron microscopy (cryo-EM) has revolutionized the structure determination of supramolecular protein complexes that are refractory to structure determination by X-ray crystallography, structure determination by cryo-EM can nonetheless be complicated by excessive conformational flexibility or structural heterogeneity resulting from weak or transient protein–protein association. Since such transient complexes are often critical for function, specialized approaches must be employed for the determination of meaningful structure–function relationships. Here, we outline examples in which transient protein–protein interactions have been visualized successfully by cryo-EM in the biosynthesis of fatty acids, polyketides, and terpenes. These studies demonstrate the utility of chemical crosslinking to stabilize transient protein–protein complexes for cryo-EM structural analysis, as well as the use of partial signal subtraction and localized reconstruction to extract useful structural information out of cryo-EM data collected from inherently dynamic systems. While these approaches do not always yield atomic resolution insights on protein–protein interactions, they nonetheless enable direct experimental observation of complexes in assembly-line biosynthesis that would otherwise be too fleeting for structural analysis.  相似文献   

16.
One of the major proteins secreted from the rat seminal vesicle epithelium, namely SV-IV, was shown to act in vitro as acyl donor and acceptor substrate for transglutaminase from both guinea pig liver and rat anterior prostate secretory fluid. Electrophoretic and chromatographic experiments indicated that the enzyme catalyzed the formation of multiple modified forms of SV-IV. In the absence of small Mr amines, transglutaminase was able to produce at least six different molecular forms of the protein, half of which possessed an Mr higher than that of native SV-IV. These findings suggested that a variable number of intermolecular, and perhaps intramolecular, crosslinks were formed between one or both glutamine residues and one or more lysine residues occurring in the SV-IV polypeptide chain. In addition, at least three modified forms of the protein were produced by transglutaminase in the presence of high concentrations of spermidine, thus indicating the formation of different (gamma-glutamyl)polyamine derivatives of SV-IV. Rabbit uteroglobin and rat anterior prostate secretory protein(s) were also shown to be able to covalently bind spermidine in the presence of the enzyme. The possible biological significance of transglutaminase-mediated modifications of SV-IV, as well as of other proteins occurring in the mammal seminal fluid, are discussed.  相似文献   

17.
18.
Proteins are the active players in performing essential molecular activities throughout biology, and their dynamics has been broadly demonstrated to relate to their mechanisms. The intrinsic fluctuations have often been used to represent their dynamics and then compared to the experimental B-factors. However, proteins do not move in a vacuum and their motions are modulated by solvent that can impose forces on the structure. In this paper, we introduce a new structural concept, which has been called the structural compliance, for the evaluation of the global and local deformability of the protein structure in response to intramolecular and solvent forces. Based on the application of pairwise pulling forces to a protein elastic network, this structural quantity has been computed and sometimes is even found to yield an improved correlation with the experimental B-factors, meaning that it may serve as a better metric for protein flexibility. The inverse of structural compliance, namely the structural stiffness, has also been defined, which shows a clear anticorrelation with the experimental data. Although the present applications are made to proteins, this approach can also be applied to other biomolecular structures such as RNA. This present study considers only elastic network models, but the approach could be applied further to conventional atomic molecular dynamics. Compliance is found to have a slightly better agreement with the experimental B-factors, perhaps reflecting its bias toward the effects of local perturbations, in contrast to mean square fluctuations. The code for calculating protein compliance and stiffness is freely accessible at https://jerniganlab.github.io/Software/PACKMAN/Tutorials/compliance .  相似文献   

19.
The M1 matrix protein of the influenza virus is one of the main structural components of the virion that performs several different functions in the infected cell. X-ray analysis (with 2.08 Å resolution) has been performed for the N-terminal part of the M1 protein (residues 2–158) but not for its C-terminal domain (159–252). In the present study, we analyzed the structure of the M1 protein of the influenza virus A/Puerto Rico/8/34 (H1N1) strain in acidic solution using tritium planigraphy. The incorporation of tritium label into the domains of the M1 protein were studied; the C domain and the interdomain loops are preferentially accessible to tritium. Analytical centrifugation and dynamic laser light scattering demonstrated anomalous hydrodynamic parameters and low structuredness of the M1 protein, which has also been confirmed by circular dichroism data. Bioinformatic analysis of the M1 protein sequence revealed intrinsically unstructured segments that were concentrated in the C domain and interdomain loops between the N-, M-, and C domains. We suggest that the multifunctionality of the M1 protein in a cell is determined by the plasticity of its tertiary structure, which is caused by the presence of intrinsically unstructured segments.  相似文献   

20.
Disordered states of proteins include the biologically functional intrinsically disordered proteins and the unfolded states of normally folded proteins. In recent years, ensemble‐modeling strategies using various experimental measurements as restraints have emerged as powerful means for structurally characterizing disordered states. However, these methods are still in their infancy compared with the structural determination of folded proteins. Here, we have addressed several issues important to ensemble modeling using our ENSEMBLE methodology. First, we assessed how calculating ensembles containing different numbers of conformers affects their structural properties. We find that larger ensembles have very similar properties to smaller ensembles fit to the same experimental restraints, thus allowing a considerable speed improvement in our calculations. In addition, we analyzed the contributions of different experimental restraints to the structural properties of calculated ensembles, enabling us to make recommendations about the experimental measurements that should be made for optimal ensemble modeling. The effects of different restraints, most significantly from chemical shifts, paramagnetic relaxation enhancements and small‐angle X‐ray scattering, but also from other data, underscore the importance of utilizing multiple sources of experimental data. Finally, we validate our ENSEMBLE methodology using both cross‐validation and synthetic experimental restraints calculated from simulated ensembles. Our results suggest that secondary structure and molecular size distribution can generally be modeled very accurately, whereas the accuracy of calculated tertiary structure is dependent on the number of distance restraints used. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号