首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship of the short-circuit current to metabolism was studied in the toad bladder in vitro. Substrates and inhibitors were added to the bathing medium and the effect on the short-circuit current was determined. The spontaneous decline in the short-circuit current that occurred in substrate-free media was prevented or reversed by the addition of glucose, pyruvate, lactate, or β-hydroxybutyrate, whereas acetate and tricarboxylic acid cycle intermediates had no effect. A variety of metabolic inhibitors depressed the short-circuit current; depression by iodoacetate and by malonate was delayed by prior addition of pyruvate or lactate but not by glucose. The ability of a substrate to stimulate the current did not correlate with its rate of oxidation to CO2. On the basis of earlier studies, the metabolic effects on the short-circuit current were assumed to reflect equivalent effects on the rate of active Na transport. It is suggested that the energy for Na transport is provided not by a general cellular metabolic pool but by a specific metabolic pathway or pathways spatially linked to the transport mechanism.  相似文献   

2.
3.
The mechanism responsible for active sodium transport in the urinary bladder of the toad appears to be located at the serosal boundary of the epithelial cell layer of the bladder. Studies of the potential step observed at the serosal boundary in the open-circuited state were undertaken in an attempt to define the factors responsible for its production. Glass micropipettes were used to measure the serosal potential step in bladders exposed on the serosal side to solutions of high potassium or of high potassium and low chloride concentration. Observed potentials exceed the maximum values which would have been expected if the serosal potential step were a potassium or chloride diffusion potential. Measurements of net cation flux exclude the possibility of a diffusion potential at this border due to the passive movement of any anionic species. The observed independence of transbladder potential and short-circuit current from the pH of the serosal medium over a wide range of pH makes it unlikely that the observed serosal potential step is a hydrogen ion diffusion potential. We conclude that the active sodium transport mechanism in toad bladder is "electrogenic."  相似文献   

4.
Electrical Properties of Toad Oocytes During Maturation and Activation   总被引:2,自引:2,他引:0  
The full-grown oocytes of the toad Bufo bufo japonicus , whether in follicular layer or not, had a membrane potential of about -50 mV in De Boer's solution (DB), but underwent a deep hyper-polarization of up to -90 mV when pretreated with Ca, Mg-free EDTA-solution. Regardless of the magnitude of their resting potentials, the defolliculated oocytes exposed to progesterone underwent a gradual depolarization before the germinal vesicle breakdown and retained membrane potential at a level of -10 mV until 18 hr post hormone treatment (PHT), the stage of the second meiotic metaphase. A positive-going activation potential of a magnitude of 70 mV was recorded in the oocytes when pricked at 18 hr PHT as well as in uterine eggs 3–5 min after insemination. A low magnitude of activation potential in response to pricking was recorded in 63% of the oocytes at 13 hr PHT, and premature oocytes exhibiting the activation potential always underwent cortical granule breakdown (CGBD) and perivitelline space formatión. Oocytes where the germinal vesicle had been removed before the hormone treatment exhibited an activation potential and underwent CGBD in response to pricking at 18 hr PHT, whereas those pulse-treated with cycloheximide (10 μg/ml) during the 8–11 hr PHT exhibited neither of these cortical responses. These results indicate that the syntheses of proteins independent of germinal vesicle taking place at 9–11 hr PHT enable the oocytes to undergo cortical responses.  相似文献   

5.
Isolated urinary bladders of the bullfrog (R. catesbeiana) and the toad (B. marinus) were mounted in an Ussing chamber. Potential differences up to 114 mv were observed in bullfrog bladder when the mucosal surface was bathed in dilute Na2SO4 and the serosal surface in sulfate Ringer's. In experiments with bullfrogs, K was used to replace Na in the mucosal solution and Na was used for K in the serosal solutions. The selectivity was judged in terms of the relative effectiveness of the replacement cation in maintaining the bladder potential. In experiments with toads, K and Rb were equally poor replacements for Na at the mucosal border, while Rb was a good replacement for K at the serosal border. Li in the mucosal solution appeared to depress the potential in part irreversibly. At the serosal border, Li was a partially effective substitute for K, more so than was Na. However, both were poor replacements compared to Rb. The mucosal surface of the urinary bladder of both frog and toad appears to be Na-selective and the serosal surface appears to be K-selective, consistent with the Koefoed-Johnsen-Ussing model for frog skin.  相似文献   

6.
7.
Potential recordings made simultaneously from opposite ends of the cell indicate that the cytoplasmic compartment of P. caudatum is nearly isopotential. Measured decrements of the spread of steady-state potentials are in essential agreement with calculated decrements for a short cable model of similar dimensions and electrical constants. Action potentials and passively conducted pulses spread at rates of over 100 µm per msec. In contrast, metachronal waves of ciliary beat progress over the cell with velocities below 1 µm per msec. Thus, electrical activity conducted by the plasma membrane cannot account for the metachronism of ciliary beat. The electrical properties of Paramecium are responsible, however, for coordinating the reorientation of cilia (either beating or paralyzed by NiCl2) which occurs over the entire cell in response to current passed across the plasma membrane. In response to a depolarization the cilia assume an anteriorly directed orientation ("ciliary reversal" for backward locomotion). The cilia over the anterior half of the organism reverse more strongly and with shorter latency than the cilia of the posterior half. This was true regardless of the location of the polarizing electrode. Since the membrane potential was shown to be essentially uniform between both ends of the cell, the cilia of the anterior and posterior must possess different sensitivities to membrane potential.  相似文献   

8.
Components of Sodium and Chloride Flux Across Toad Bladder   总被引:4,自引:0,他引:4       下载免费PDF全文
The effect of transepithelial potential difference (ψ) on Na and Cl flux across toad bladder was assessed by measuring isotopic flux between identical media at various values of ψ. The contribution of edge damage to ionic permeability was eliminated, resulting in relatively high spontaneous ψ (-97 ±4 mv) and low electrical conductance g. Bidirectional Na fluxes were measured simultaneously. Unidirectional Cl fluxes were measured in paired hemibladders at ψ = 0 mv or -97 mv. Net Na flux JNa, at ψ = 0 mv, was slightly less than short-circuit current (SCC). At ψ = -97 mv, JNa averaged 17% of SCC, and was sometimes zero. ΔJNa/Δψ (= g+) averaged 60% of g between -97 mv and +75 mv; at -150 mv, g+ fell, indicating rectification. Analysis of unidirectional Na fluxes indicates low passive conductance (1.5 μmho/mg wet weight), a bidirectional, electrically neutral flux of approximately 0.13 μa/mg, and relatively large conductance of the active transport path at ψ ≥ -97 mv. The absence of appreciable transstimulation of serosal (S)-to-mucosal (M) Na flux (in response to increasing mucosal Na concentration) indicates that the electrically neutral flux is not exchange diffusion in the usual sense. Analysis of Cl fluxes indicates similar values for passive conductance and neutral flux, suggesting linked neutral flux of Na and Cl. Either the electromotive force of the Na pump E, its conductance ga, or both are strong functions of ψ. The product of these two quantities, Ega, is a measure of the “transport capacity” at any given value of ψ, independent of the direct effect of ψ on JNa through the pump path. Ega varies with ψ. Hence estimation of the net Na flux or current at any one value of ψ, including ψ = 0, fails to reveal the maximal transport capacity of the pump, its resting electromotive force (when JNa = 0 through the pump), or the dependence of transport capacity on potential.  相似文献   

9.
The theoretical approach presented in the previous paper provides an analytical method for determining the unidirectional, nonsteady-state fluxes in a three compartment system. Based on this a study was made of the sodium flux transients in the toad urinary bladder. A transient time-dependent state was generated by suddenly short-circuiting a bladder previously maintained in an open-circuited steady state. The sequence of experiments suggested by the theory provided the data required for the analysis. The results of these tracer experiments were consistent with the complex non-three compartmental structure of this tissue. As a result both of the inadequacy of the three compartment model in representing the tissue and of certain experimental difficulties, attempts at a quantitative solution were not entirely successful. Useful information was nevertheless obtained through a careful use of this model, and a qualitative analysis implied that the sodium influxes into the tissue at both of its surfaces are sensitive to changes in electrical potential while both effluxes are insensitive to this change. This suggests that both of the effluxes result from active processes while both influxes are associated with passive processes. The net transepithelial transport of sodium would then necessarily result from a more complex polarization than that proposed by Koefoed-Johnsen and Ussing.  相似文献   

10.
Studies of the effective, homogeneous, dielectric constants of bacteria are used to show that the resistances of their cytoplasmic membranes are too great to explain the low-frequency conductivities which have been observed for these organisms. This reaffirms the conclusion that at low frequencies the conductivities of bacteria reflect properties of their cell walls. In the organisms studied, the conductivities of the cell wall region are as great as the conductivities of the cytoplasm. This is true even though the ion concentration in the environment is much less than that in the cells. The mobile ions of the wall are presumed to be counterions for fixed charges in this region.  相似文献   

11.
Very high dielectric constants have been observed for bacteria at low frequencies. High dielectric constants such as these can be explained by a theory which has been developed for the low-frequency dielectric dispersion of porous charged particles and which has been tested successfully through measurements with ion exchange resins. The bacterial cell wall is electrically similar to an ion exchange resin. Observations show that the theory provides a quantitative explanation for the low-frequency dielectric dispersion of bacteria.  相似文献   

12.
Effective conductivities are reported for the bacteria Escherichia coli and Micrococcus lysodeikticus over a range of environmental conductivity. The apparent conductivities of the organisms can be explained in terms of the properties of the cell wall. At low conductivities of the environment, the conductivity of the cell appears to be dominated by the counterions of the fixed charge of the cell wall. At higher conductivities of the suspending medium, evidence suggests that ions from the environment invade the cell wall causing an increase in the effective conductivity of the cell so that it takes on values roughly proportional to that of the environment. The model points to the usefulness of dielectric techniques in studies of the properties of intact cell walls.  相似文献   

13.
The membrane systems in "columnar cells" of the goby urinary bladder were studied after staining with ferrocyanide-reduced osmium tetroxide (K arnovsky ). In addition to the endoplasmic reticulum, two distinct systems of membranes were observed: 1) a vesiculotubular system made up of vesicles and short tubules located between the Golgi area and the apical membrane and 2) well-developed infoldings of the laterobasal plasma membrane which form either complete or fenestrated sheets. Adaptation to 5% seawater or prolactin exposure of seawater fish induces a proliferation of these membrane systems and, in particular, of the complete infoldings of the laterobasal plasma membrane. These observations suggest high activity of these bladder cells in osmoregulatory adjustments to hypotonic environments. The divergence between cytological and physiological indicators of activity is considered.  相似文献   

14.
A sensitive and precise method for assaying the water permeability response evoked by neurohypophyseal hormones and their synthetic analogues on the isolated urinary bladder of the toad (Bufo marinus L.) is described. The method permits detection of 8-arginine-vasotocin at concentrations as low as 10-12 M. This sensitivity, not achieved heretofore with this tissue, results largely from minimizing interference of inhibitory substances by means of an "in vitro circulation assembly." The precision of the method derives from a direct comparison between the cumulative dose-response curve of an agonist of unknown potency acting on one hemibladder and that of a reference compound acting on the contralateral hemibladder. Crystalline deamino-oxytocin is used as the reference standard in this assay. The intrinsic activity of 2-(O-methyltyrosine)-oxytocin, as defined by the maximal response, is 12% lower than that of deamino-oxytocin. All other hormonal peptides investigated have the same intrinsic activity as deamino-oxytocin, even 5-valine-oxytocin, in spite of its extremely low affinity. A comparison of the potencies of 8-arginine-vasotocin vs. 8-arginine-vasopressin, 8-ornithine-vasotocin vs. 8-ornithine-vasopressin, 8-alanine-oxytocin vs. 8-alanine-oxypressin, and deamino-8-alanine-oxytocin vs. deamino-8-alanine-oxypressin suggests that an isoleucine residue in position 3 imparts a higher specificity for binding of the hormonal peptide molecule to the bladder receptor than a phenylalanine residue in this locus.  相似文献   

15.
The dielectric properties of isolated Micrococcus lysodeikticus cell walls have been studied to establish more firmly the view that wall-associated ions play a major role in the conduction of low frequency electric current by intact bacterial cells. The conductivity of isolated walls was found to be about 0.40 mho/m. If counterions associated with fixed, ionized groups in the wall have average mobilities equal to that of sodium ions in free solution, the fixed charge concentration required to account for the measured conductivity is between 75 and 95 meq/liter of wet wall volume. Estimates of the numbers of titratable amino and carboxyl groups in wall polymers indicate that conductivity is more closely related to net wall charge than to total wall charge. The measured wall conductivity was used to predict a value of 0.15 ± 0.03 mho/m for whole cell conductivity. This prediction is close to the measured value of 0.25 ± 0.05 mho/m and it is thought that much of the disparity in values is related to changes in wall structure and composition during the isolation procedures.  相似文献   

16.
Observations of protoplasts of Micrococcus lysodeikticus show that removal of the cell wall of this organism decreases the dielectric constant by two orders of magnitude. The upper limit of the effective, homogeneous conductivity for the protoplast is 0.001 mho/m as compared with 0.045 mho/m for the intact cell. These results conclusively demonstrate the dominant effect of the cell wall on the low frequency dielectric properties of bacteria.  相似文献   

17.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

18.
19.
Measurements have been made of the permeability of the isolated urinary bladder of the toad to a number of small solute molecules, in the presence and absence of vasopressin. Vasopressin has a strikingly specific effect on increasing permeability of the bladder to a group of small, uncharged amides and alcohols while penetration by other small molecules and ions is unaffected. The movement of urea is passive, as indicated by equal flux rates in the two directions. The reflection coefficients for chloride and thiourea indicate a high degree of impermeability of the bladder to these solutes even in the presence of large net movements of water. The low concentration of thiourea in the tissue water when this compound is added to the mucosal bathing medium indicates that the major permeability barrier to thiourea is at the mucosal surface of the bladder. The findings can be accounted for by a double permeability barrier consisting of a fine selective diffusion barrier and a porous barrier in series. The former would constitute the permeability barrier to most small solutes while the latter would be the rate-limiting barrier for water and the amides. It would be the porous barrier which is affected by vasopressin. Reasons are presented which require both barriers to be contained in or near the plasma membrane at the mucosal surface of the bladder.  相似文献   

20.
The unidirectional influxes of Na, K, and Cl into isolated strips of rabbit ileum are comprised of movements across the mucosal membrane of the epithelial cells and ionic diffusion into an extracellular shunt pathway. A large fraction of the Na influx across the mucosal membrane alone is inhibited by Li, suggesting the participation of a carrier mechanism in the influx process. The partial ionic shunt conductances of Na, K, and Cl account for at least 82% of the total tissue conductance. The calculated shunt permeabilities (P) are (in centimeters per hour) PK = 0.040, PNa = 0.035, and PCl = 0.019, so that PK:PNa:PCl = 1.14:1.00:0.55. Diffusion potentials across the tissue resulting from isotonic replacement of NaCl in the mucosal solution with mannitol or KCl are described by the Goldman constant-field equation together with the above permeabilities of the shunt pathway. These observations are not consistent with permeation through a fixed-charge pore but can be explained by a model featuring constant ionic partition into a neutral-polar pore that traverses the tight junction. Such a pore may be lined with either fixed dipoles or fixed dipolar ions oriented such that electronegative groups influence the permselective properties of the diffusion pathway. The essential feature of both models is that electroneutrality is maintained by means of fixed membrane components and does not depend upon the presence of mobile counterions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号