首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium accumulation by two fractions of sarcoplasmic reticulum presumably derived from longitudinal tubules (light vesicles) and terminal cisternae (heavy vesicles) was examined radiochemically in the presence of various free Mg2+ concentrations. Both fractions of sarcoplasmic reticulum exhibited a Mg2+-dependent increase in phosphate-supported calcium uptake velocity, though half-maximal velocity in heavy vesicles occurred at a much higher free Mg2+ concentration than that in light vesicles (i.e., approx. 0.90 mM vs. approx. 0.02 mM Mg2+). Calcium uptake velocity in light vesicles correlated with Ca2+-dependent ATPase activity, suggesting that Mg2+ stimulated the calcium pump. Calcium uptake velocity in heavy vesicles did not correlate with Ca2+-dependent ATPase activity, although a Mg2+-dependent increase in calcium influx was observed. Thus, Mg2+ may increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles. Analyses of calcium sequestration (in the absence of phosphate) showed a similar trend in that elevation of Mg2+ from 0.07 to 5 mM stimulated calcium sequestration in heavy vesicles much more than in light vesicles. This difference between the two fractions of sarcoplasmic reticulum was not explained by phosphoenzyme (EP) level or distribution. Analyses of calcium uptake, Ca2+-dependent ATPase activity, and unidirectional calcium flux in the presence of approx. 0.4 mM Mg2+ suggested that ruthenium red (0.5 microM) can also increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles, with no effect in light vesicles. These functional differences between light and heavy vesicles suggest that calcium transport in terminal cisternae is regulated differently from that in longitudinal tubules.  相似文献   

2.
Fragmented sarcoplasmic reticulum (FSR) of bullfrog skeletal muscle was fractionated into light and heavy sarcoplasmic reticulum (LSR and HSR) by sucrose density gradient centrifugation. Morphological and biochemical studies revealed that large parts of LSR and HSR were derived from longitudinal reticulum and terminal cisternae of SR, respectively. The Ca2+ uptake ability and ATPase activity of LSR were higher than those of HSR. Ca2+ release from Ca2+ preloaded SR vesicles by changing the medium from K-gluconate to KCl was suppressed by addition of 0.3 M sucrose or glucose; there was no correlation between Ca2+ release and membrane potential change either in LSR or HSR vesicles. Dantrolene sodium (DAN, 20 microM) had no effect on Ca2+ release. It is concluded that ion-induced Ca2+ release from SR (both HSR and LSR) in the isolated system is due to an osmotic effect.  相似文献   

3.
Slow dissociation of ATP from the calcium ATPase   总被引:1,自引:0,他引:1  
The acyl-phosphate intermediate of the sarcoplasmic reticulum calcium ATPase reaction, formed in a brief incubation of vesicular enzyme with 5 microM [gamma-32P]ATP and calcium, reacts biphasically with added ADP (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4). Both the burst size and the rate constant for the slow phase increase with increasing ADP concentration in the way that is expected if the burst represents very rapid formation of an equilibrium amount of enzyme-bound ATP and the slow phase represents rate-limiting dissociation of ATP. Also consistent with this interpretation are the slow labeling of phosphoenzyme under conditions in which unlabeled ATP must dissociate first and the observation of a burst of ATP formation on ADP addition to phosphoenzyme. Values of the equilibrium constants for ADP dissociation from phosphoenzyme (0.75 mM), for ATP formation on the enzyme (2.3), and for the ATP dissociation rate constant (37 s-1) were obtained from a quantitative analysis of the data.  相似文献   

4.
1. The sarcoplasmic reticulum (SR) from malignant hyperpyrexia susceptible (MHS) and control porcine skeletal muscle was separated into vesicular fractions enriched in the membrane elements of the terminal cisternae and longitudinal tubules. 2. The two membrane preparations were highly purified and had distinctive features which were associated with their origins in the SR membraneous network. 3. Calsequestrin and calcium were enriched in the terminal cisternae fraction (HSR), in comparison to longitudinal tubule preparations (LSR). 4. The HSR membrane also had a greater total capacity to store Ca2+ and Ca2+ release was more rapid than from LSR preparations. 5. No distinction could be made between the membrane morphology, Ca2+ -fluxes or Ca2+ -dependent ATPase activities, associated with these functionally distinct regions of MHS and control preparations.  相似文献   

5.
Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic smooth muscle sarcoplasmic reticulum vesicles was examined using the calcium indicator antipyrylazo III. Calcium release was initiated by addition of inositol 1,4,5-trisphosphate (IP3) to aortic vesicles 7 min after initiation of ATP-supported calcium uptake. Half-maximal calcium release occurred at 1 microM IP3, with maximal calcium release amounting to 25 +/- 2% of the intravesicular calcium (n = 12, 9 preparations). Ruthenium red (10-20 microM), which has been reported to block IP3-induced calcium release from skeletal muscle sarcoplasmic reticulum, did not inhibit aortic IP3-induced calcium release. Elevation of Mg2+ concentration from 0.06 to 7.8 mM inhibited aortic IP3-induced calcium release 75%, which contrasts with the Mg2+-insensitive IP3-induced calcium release from platelet reticular membranes. The IP3-dependence of aortic calcium release suggested that Mg2+ acted as a noncompetitive inhibitor. Thus, aortic sarcoplasmic reticulum vesicles contain an IP3-sensitive calcium pathway which is inhibited by millimolar concentrations of Mg2+, but which is not inhibited by Ruthenium red and so differs from the previously described IP3-sensitive calcium pathways in skeletal muscle and platelet reticular membranes.  相似文献   

6.
Partial reactions of potassium-stimulated ATP phosphohydrolase from hog gastric mucosa were studied by means of a rapid-mixing apparatus. At 21 degrees C, in the presence of 2 mM MgCl2 and 5 microM [gamma-32P]ATP there was a rapid phosphorylation of the enzyme with a pseudofirst order rate constant of 1400 min-1. Addition of the ATP about 120 ms before the MgCl2 increased this rate constant to 4400 min-1. In the absence of MgCl2 there was no phosphorylation. Addition of 4 or 10 mM KCl to the phosphoenzyme which had been formed in the absence of KCl produced a rapid initial rate of dephosphorylation (k = 2600 and 3200 min-1 respectively). An additional slow component of dephosphorylation was observed when unlabeled ATP was added together with the KCl (k = 700 to 900 min-1). At a 4 mM concentration, KCl stimulated the ATPase activity about 9-fold. At higher concentrations, the activity was reduced in parallel with a reduction of the steady state level of phosphoenzyme. Addition of KCl to the enzyme before the addition of ATP plus MgCl2 resulted in a low rate and extent of phosphorylation. KCl appeared to inhibit the phosphorylation at a level preceeding the E.ATP complex.  相似文献   

7.
Calcium release from isolated heavy sarcoplasmic reticulum of rabbit skeletal muscle by several calmodulin antagonistic drugs was measured spectrophotometrically with arsenazo III and compared with the properties of the caffeine-induced calcium release. Trifluoperazine and W7 (about 500 microM) released all actively accumulated calcium (half-maximum release at 129 microM and 98 microM, respectively) in the presence 0.5 mM MgCl2 and 1 mg/ml sarcoplasmic reticulum protein; calmidazolium (100 microM) and compound 48/80 (70 micrograms/ml) released maximally 30-40% calcium, whilst bepridil (100 microM) and felodipin (50 microM) with calmodulin antagonistic strength similar to trifluoperazine (determined by inhibition of the calcium, calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum) did not cause a detectable calcium release, indicating that this drug-induced calcium release is not due to the calmodulin antagonistic properties of the tested drugs. Calcium release of trifluoperazine, W7 and compound 48/80 and that of caffeine was inhibited by similar concentrations of magnesium (half-inhibition 1.4-4.2 mM compared with 0.97 mM for caffeine) and ruthenium red (half-inhibition for trifluoperazine, W7 and compound 48/80 was 0.22 microM, 0.08 microM and 0.63 micrograms/ml, respectively, compared with 0.13 microM for caffeine), suggesting that this drug-induced calcium release occurs via the calcium-gated calcium channel of sarcoplasmic reticulum stimulated by caffeine or channels with similar properties.  相似文献   

8.
The ATP-dependent phosphoenzyme formation and its reversal were studied at 0 degrees C and pH 7.0 in the ATPase of sarcoplasmic reticulum. Addition of KCl or several other salts (approximately 100 mM) decreased the maximum rate of ADP-induced dephosphorylation of phosphoenzyme as well as the apparent affinity of the phosphoenzyme toward ADP. High ATP had a similar effect on the latter, whereas it had little effect on the former. In contrast, high KCl or a considerable change in the ionic strength had little effect on the initial rate of phosphoenzyme formation at saturating ATP concentrations. During steady state phosphorylation at 1.0 mM MgCl2 and 5.0 mM CaCl2 in the absence of added KCl, a significant amount of [gamma-32P]ATP remained bound to the enzyme even when the enzyme concentration was much in excess over that of [gamma-32P]ATP. Evidence is presented that this enzyme-ATP complex represents a precursor to the phosphoenzyme. ATP dissociated slowly (0.20 s-1) from this enzyme-ATP complex and addition of high KCl or other salts accelerated its dissociation. In contrast, when the enzyme was complexed with adenyl-5'-yl (beta, gamma-methylene)diphosphonate in the absence of added KCl under these conditions, dissociation of the nucleotide from the complex as estimated in the displacement experiment with [gamma-32P]ATP, was found to be much faster than that of ATP.  相似文献   

9.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca(2+) transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca(2+) channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (DeltaH(cal)) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg(2+) or ruthenium red, conditions that close the ryanodine Ca(2+) channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the DeltaH(cal) values of ATP hydrolysis increased significantly. Neither Mg(2+) nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the DeltaH(cal) of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca(2+) channel is opened or closed.  相似文献   

11.
The steady state kinetics of ATP hydrolysis by partially purified adenosine triphosphatase preparations of sarcoplasmic reticulum was investigated at 0 degrees C and pH 7.0 in 2.0 mM MgCl2, 20 microM [gamma-32P]ATP, 20 microM CaCl2, and various concentrations of KCl in the presence and absence of 12% dimethyl sulfoxide. The steady state phosphoenzyme formed under these conditions could be resolved kinetically into ADP-sensitive and ADP-insensitive forms. These steady state kinetic data were analyzed according to a scheme in which the ADP-sensitive and ADP-insensitive phosphoenzymes occur sequentially, and Pi is derived from the latter. The KCl-dependent turnover rate of the ADP-insensitive phosphoenzyme that was estimated according to this scheme was in good agreement with the directly measured hydrolysis rate constant of the ADP-insensitive phosphoenzyme. In addition, the time course of the decomposition of the total amount of phosphoenzyme, measured after a steady state level was reached in 20 mM KCl and further phosphorylation was prevented by addition of excess ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid, was also in agreement with that calculated according to this scheme using values of the rate constants estimated from the amounts of the ADP-sensitive and ADP-insensitive phosphoenzymes and the rate of ATP hydrolysis. These results, together with our previous findings, support the view that this scheme describes the mechanism of ATP hydrolysis in the presence of KCl.  相似文献   

12.
Contraction of skeletal muscle is triggered by release of calcium from the sarcoplasmic reticulum. In this study, highly purified normal and dystrophic mouse sarcoplasmic reticulum vesicles were compared with respect to calcium release characteristics. Sarcoplasmic reticulum vesicles were actively loaded with calcium in the presence of an ATP-regenerating system. Calcium fluxes were followed by dual wavelength spectrophotometry using the metallochromic indicators antipyrylazo III and arsenazo III, and by isotopic techniques. Calcium release from sarcoplasmic reticulum vesicles was elicited by (a) changing the free calcium concentration of the assay medium (calcium-induced calcium release); (b) addition of a permeant anion to the assay medium, following calcium loading in the presence of a relatively impermeant anion (depolarization-induced calcium release); (c) addition of the lipophilic anion tetraphenylboron (TPB?) to the assay medium and (d) using specific experimental conditions, i.e. high phosphate levels and low magnesium (spontaneous calcium release). Drugs known to influence Ca2+ release were shown to differentially affect the various types of calcium release. Caffeine (10 mM) was found to enhance calcium-induced calcium release from isolated sarcoplasmic reticulum. Ruthenium red (20 μM) inhibited both calcium-induced calcium release and tetraphenylboron-induced calcium release, and partially inhibited spontaneous calcium release and depolarization-induced calcium release. Local anesthetics inhibited spontaneous calcium release in a time-dependent manner, and inhibited calcium-induced calcium release instantaneously, but did not inhibit depolarization-induced calcium release. Use of pharmacological agents indicates that several types of calcium release operate in vitro. No significant differences were found between normal and dystrophic sarcoplasmic reticulum in calcium release kinetics or drug sensitivities.  相似文献   

13.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

14.
Summary Light and heavy sarcoplasmic reticulum vesicles (LSR, HSR) isolated from rabbit leg muscle have been used in a study of chloride-induced Ca2+ release. The biochemical and morphological data indicate that LSR is derived from the longitudinal reticulum and HSR is derived from the terminal cisternae of the sarcoplasmic reticulum. LSR and HSR were both able to accumulate Ca2+ in the presence of ATP to amounts greater than 100 nmol Ca2+/mg of protein in less than 1 min. LSR and HSR each had a biphasic time course of Ca2+ uptake. The initial uptake was followed by a rapid release, after approximately 1 min, of 30–40% of the accumulated Ca2+, which was then followed by a slower phase of Ca2+ accumulation. Ca2+ taken up by the SR vesicles could be released from both the LSR and HSR by changing the anion outside the vesicles from methanesulfonate to chloride. Due to the difference in permeability between methanesulfonate and chloride, this change should result in a decreased positivity inside the vesicles with respect to the exterior. It could also result in osmotic swelling of the vesicles. Changing the ionic medium from chloride to methanesulfonate caused no release of Ca2+. The amount of accumulated Ca2+ released in 6 sec by changing the anion outside the vesicles from methanesulfonate to chloride was 30–35 nmol/mg membrane protein for LSR and HSR, respectively. Osmotic buffering with 200mm sucrose caused a slight inhibition of chloride-induced Ca2+ release from HSR (17%15%) but it greatly reduced the release of Ca2+ from LSR (32%15%). The specificity of Ca2+ release was measured using SR vesicles which were passively loaded with 10mm 22Na+. LSR released five times more22Na+ than HSR under same conditions as chloride-induced Ca2+ release occurred. Na dantrolene (20 m) had no effect on the release of Ca2+ from LSR but it inhibited the chloride-induced Ca2+ release from HSR by more than 50%. Na dantrolene also increased the Ca2+ uptake in the HSR by 20% while not affecting LSR Ca2+ uptake. Our results indicate the presence of a chloride-induced, Na dantrolene inhibited, Ca2+ release from HSR, which is not due to osmotic swelling.  相似文献   

15.
The sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca2+ transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca2+ channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (ΔHcal) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg2+ or ruthenium red, conditions that close the ryanodine Ca2+ channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the ΔHcal values of ATP hydrolysis increased significantly. Neither Mg2+ nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the ΔHcal of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca2+ channel is opened or closed.  相似文献   

16.
J R Petithory  W P Jencks 《Biochemistry》1986,25(16):4493-4497
The calcium adenosinetriphosphatase of sarcoplasmic reticulum, preincubated with Ca2+ on the vesicle exterior (cE X Ca2), reacts with 0.3-0.5 mM Mg X ATP to form covalent phosphoenzyme (E approximately P X Ca2) with an observed rate constant of 220 s-1 (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4, 23 microM free external Ca2+, intact SR vesicles passively loaded with 20 mM Ca2+). If the phosphoryl-transfer step were rate-limiting, with kf = 220 s-1, the approach to equilibrium in the presence of ADP, to give 50% EP and kf = kr, would follow kobsd = kf + kr = 440 s-1. The reaction of cE X Ca2 with 0.8-1.2 mM ATP plus 0.25 mM ADP proceeds to 50% completion with kobsd = 270 s-1. This result shows that phosphoryl transfer from bound ATP to the enzyme is not the rate-limiting step for phosphoenzyme formation from cE X Ca2. The result is consistent with a rate-limiting conformational change of the cE X Ca2 X ATP intermediate followed by rapid (greater than or equal to 1000 s-1) phosphoryl transfer. Calcium dissociates from cE X Ca2 X ATP with kobsd = 80 s-1 and ATP dissociates with kobsd = 120 s-1 when cE X Ca2 X ATP is formed by the addition of ATP to cE X Ca2. However, when E X Ca2 X ATP is formed in the reverse direction, from the reaction of E approximately P X Ca2 and ADP, Ca2+ dissociates with kobsd = 45 s-1 and ATP dissociates with kobsd = 35 s-1. This shows that different E X Ca2 X ATP intermediates are generated in the forward and reverse directions, which are interconverted by a conformational change.  相似文献   

17.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics.  相似文献   

18.
The sequential binding of Sr2+ and Ca2+ to the cytoplasmic transport sites of the sarcoplasmic reticulum calcium ATPase allows the formation of two different mixed complexes: cE.Sr.Ca, with Sr2+ bound to the "inner" site and Ca2+ bound to the "outer" site, and cE. Ca.Sr, with Ca2+ bound to the inner site and Sr2+ bound to the outer site (pH 7.0, 25 degrees C, 10 mM MgCl2, 100 mM KCl). Both cE.Sr.45Ca and cE.45Ca.Sr react with ATP to internalize one 45Ca/phosphoenzyme. The value of K0.5 = 83 microM Sr2+ for activation of the enzyme for phosphorylation by ATP is much larger than K0.5 = 28 microM Sr2+ for inhibition of phosphoenzyme formation from inorganic phosphate (eta H = 1.0-1.3). These results are consistent with the sequential binding of two strontium ions with negative cooperativity and dissociation constants of KSr1 = 35 microM and KSr2 = 55 microM. The species cE.Sr2 and cE.Ca2 react rapidly with ATP but not inorganic phosphate. However, enzyme with one strontium bound, cE.Sr, does not react with either inorganic phosphate or ATP. Therefore, the conformational changes in the enzyme that alter the chemical specificity for phosphorylation by ATP and by inorganic phosphate are different. This requires the existence of at least three forms of the unphosphorylated enzyme with three different chemical specificities for catalysis.  相似文献   

19.
The calcium release channel of sarcoplasmic reticulum mediates Ca2+ release which triggers muscle contraction in excitation-contraction coupling. The channels have been identified morphologically with the feet structures, which are involved in junctional association of terminal cisternae of sarcoplasmic reticulum with the transverse tubules to form the triad junction. In this study, we further characterize the action of drugs on the calcium release channel from sarcoplasmic reticulum fused into planar bilayers. Adriamycin is an effective cancer chemotherapeutic drug, which is limited by its cardiotoxicity. The drug, when added to the myoplasmic side (cis side), activates channel opening at microM concentrations in a dose dependent manner. Adriamycin together with ATP (mM) gives optimal activation, with an open probability (Po) of approximately 1.0. Ruthenium red added to the cis side, equivalent to the cytoplasmic (myoplasmic) domain, completely blocks channel opening. Qualitatively similar results are obtained with adriamycinol, the major metabolite of adriamycin. The inhibition by adriamycin is not reversed by reperfusion to wash out the drug. Silver ions are also found to activate the channel. The conductance of the channel activated by adriamycin, adriamycinol or Ag+ is approximately 100 ps, similar to that previously reported for activation of the channel with Ca2+ and ATP. Ruthenium red has previously been observed to block channel activation from the cytoplasmic side.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Isolated transverse tubule vesicles free of sarcoplasmic reticulum transport calcium with high affinity in the presence of ATP. The calcium transport by transverse tubules differs from calcium transport by sarcoplasmic reticulum. It is not increased by oxalate or phosphate, it has a different temperature dependence, it is inhibited by sub-micromolar concentrations of orthovanadate, it is stimulated by calmodulin, and is inhibited by quercetin without causing calcium release. The rates of calcium transport by transverse tubules are two orders of magnitude lower than those of sarcoplasmic reticulum, suggesting that the calcium pump protein of transverse tubules is a minor component of the membrane. Addition of calmodulin to transverse tubule vesicles--treated with high salt in the presence of EGTA to remove endogenous calmodulin--caused a marked stimulation of transport rates at low concentrations of calcium, and decreased from 1.0 to 0.3 microM the calcium concentration at which half-maximal rates of transport were obtained. A role for the transverse tubule calcium pump in maintaining low sarcoplasmic calcium concentrations is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号