首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of low-intensity laser radiation on the accumulation of secondary products of lipid peroxidation was studied in wheat (Triticum aestivum L.) tissue culture. A five-min-long callus irradiation by the helium-neon laser light with the wavelength = 632.8 nm and the intensity of 10 mW resulted in an increase in the accumulation of the products of reaction with thiobarbituric acid (TBA-reactive products). The effect was less pronounced within two days after laser treatment, but even in this case the content of TBA-reactive products was greater than in the control. The data obtained confirm that the low-intensity laser radiation can induce lipid peroxidation processes in plant tissues.  相似文献   

2.
This review is devoted to contemporary status of investigation of C-29 and C-28 plant sterols (phytosterols) in relation to their biological activity in mammals and mammalian cells. On the basis of experimental studies published during the last decade the following questions are discussed: phytosterols and nutrition; phytosterols and body cholesterol level; phytosterols and intestinal absorption of lipids, the role of phytosterols in lipid metabolism regulation; phytosterols and cultured mammalian cells; products of phytosterols oxidation; phytoecdysteroids and induced gene expression.  相似文献   

3.
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids — including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids — also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.  相似文献   

4.
Leaf senescence and activities of the antioxidant enzymes   总被引:1,自引:0,他引:1  
Senescence is a genetically regulated process that involves decomposition of cellular structures and distribution of the products of this degradation to other plant parts. Reactions involving reactive oxygen species are the intrinsic features of these processes and their role in senescence is suggested. The malfunction of protection against destruction induced by reactive oxygen species could be the starting point of senescence. This article reviews biochemical changes during senescence in relation to reactive oxygen species and changes in antioxidant protection.  相似文献   

5.
Changes in nonpolar aldehydes in bean cotyledons during ageing   总被引:1,自引:0,他引:1  
Ageing of plant organs is accompanied by an increased production of free radicals what results in membrane lipid peroxidation. Non-polar aldehydes originating from this process interact with the cellular material to form the fluorescent end-products, lipofuscin-like pigments (LFP). Their formation was studied both qualitatively and quantitatively in ageing of bean cotyledons. The concentration of lipofuscin-like pigments increased 9-fold in 14-d-old (senescent) cotyledons in relation to 8-d-old (young) cotyledons. HPLC fractionation patterns indicate changes in their composition during ageing. The LFP increase in old cotyledons was accompanied by elevated levels of non-polar aldehydes that increased during ageing to 167 %. The composition of aldehydes was studied by mass spectrometry. The most abundant fraction in both young and old cotyledon was represented by C12 aldehydes, which comprised both saturated and unsaturated species. We have observed differences in abundances of individual aldehydes between the young and the old cotyledons that might explain the differences in the composition of lipofuscin-like pigments. These results support the involvement of free radicals in plant ageing; however, it is suggested that plant aldehydic products of lipid peroxidation differ from those found in animals.  相似文献   

6.
The Function of Tocopherols and Tocotrienols in Plants   总被引:1,自引:0,他引:1  
Referee: Dr. Kozi Asada, Department of Biotechnology, Faculty of Engineering, Fukuyama University, Gakuencho 1, Fukuyama 729-0292, Japan Tocopherols and tocotrienols, which differ only in the degree of saturation of their hydrophobic prenyl side chains, are lipid-soluble molecules that have a number of functions in plants. Synthesized from homogentisic acid and isopentenyl diphosphate in the plastid envelope, tocopherols and tocotrienols are essential to maintain membrane integrity. α-Tocopherol is the major form found in green parts of plants, while tocotrienols are mostly found in seeds. These compounds are antioxidants, thus they protect the plant from oxygen toxicity. Tocopherols and tocotrienols scavenge lipid peroxy radicals, thereby preventing the propagation of lipid peroxidation in membranes, and the ensuing products tocopheroxyl and tocotrienoxyl radicals, respectively, are recycled back to tocopherols and tocotrienols by the concerted action of other antioxidants. Furthermore, tocopherols and tocotrienols protect lipids and other membrane components by physically quenching and reacting chemically with singlet oxygen. The scavenging of singlet oxygen by α-tocopherol in chloroplasts results in the formation of, among other products, α -tocopherol quinone, a known contributor to cyclic electron transport in thylakoid membranes, therefore providing photoprotection for chloroplasts. Moreover, given that α-tocopherol increases membrane rigidity, its concentration, together with that of the other membrane components, might be regulated to afford adequate fluidity for membrane function. Furthermore, α-tocopherol may affect intracellular signaling in plant cells. The effects of this compound in intracellular signaling may be either direct, by interacting with key components of the signaling cascade, or indirect, through the prevention of lipid peroxidation or the scavenging of singlet oxygen. In the latter case, α-tocopherol may regulate the concentration of reactive oxygen species and plant hormones, such as jasmonic acid, within the cell, which control both the growth and development of plants, and also plant response to stress.  相似文献   

7.
Abstract. Exposure of young bean foliage to acid rain induces free-radical-mediated lipid peroxidation and causes the same disruptive changes in the molecular organization of membrane lipid-bilayers that are observed during natural leaf senescence. Young plants were misted daily for 7d with simulated acid rain for a 2h period. Wide angle X-ray diffraction revealed the presence of gel-phase lipid in a fraction containing predominantly chloroplast membranes isolated from treated leaves, and the lipid-phase transition temperature of these membranes rose from below −30°C to ∼ 36°C over the treatment period. The formation of gel-phase lipid is known to be associated with lipid peroxidation, and it is therefore significant that production of ethane and levels of malondialdehyde in the leaves, which are both products of lipid peroxidation, rose throughout the treatment period. There was also increased production of ethylene and superoxide radical, which are typical responses of plant tissue to toxicity.  相似文献   

8.
Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi .  相似文献   

9.
Rapid accumulation of toxic products from reactions of reactive oxygen species (ROS) with lipids and proteins significantly contributes to the damage of crop plants under biotic and abiotic stresses. Here we have identified a stress-activated alfalfa gene encoding a novel plant NADPH-dependent aldose/aldehyde reductase that also exhibited characteristics of the homologous human enzyme. The recombinant alfalfa enzyme is active on 4-hydroxynon-2-enal, a known cytotoxic lipid peroxide degradation product. Ectopic synthesis of this enzyme in transgenic tobacco plants provided considerable tolerance against oxidative damage caused by paraquat and heavy metal treatment. These transformants could also resist a long period of water deficiency and exhibited improved recovery after rehydration. We found a reduced production of lipid peroxidation-derived reactive aldehydes in these transformed plants under different stresses. These studies reveal a new and efficient detoxification pathway in plants.  相似文献   

10.
The role of Δ12-acyl-lipid desaturase in plant resistance to hypothermia-induced oxidative stress was investigated. This study focused on modulation of free-radical processes occurring at low temperature in leaf cells of potato plants (Solanum tuberosum L., cv. Desnitsa) transformed with the gene for Δ12-acyl-lipid desaturase from the cyanobacterium Synechocystis sp. PCC 6803. Nontransformed plants of the same cultivar were used as a control material. The plants were grown in vitro on Murashige and Skoog agarized medium containing 2% sucrose. During hypothermia the rate of superoxide anion generation and hydrogen peroxide concentration decreased significantly. In addition, the content of both primary products (conjugated dienes and trienes) and secondary products (malonic dialdehyde) of lipid peroxidation was lower in the transformed plant leaves than in leaves of wild-type plants. It is supposed that the insertion into the plant genome of Δ12-acyl-lipid desaturase stabilizes the composition and physical properties of biomembranes by promoting polyunsaturation of fatty acids, which averts the accelerated generation of O 2 ·? , — and suppresses lipid peroxidation during hypothermia. These changes improved cold resistance of potato plants, which was evident from the less severe injury of leaf blades in cold-treated transgenic plants, as compared to that in the wild-type line. The activity of superoxide dismutase, a key enzyme of the antioxidant defense system was lower in leaves of transformed plants than in leaves of wild-type plants. A comparatively low activity of superoxide dismutase in transgenic plants implies that these plants experience less severe thermal and oxidative stress upon cooling and can cope with the cold without considerable increase in the enzyme activity. It is concluded that the insertion of the desA gene encoding Δ12-acyl-lipid desaturase into cold-resistant potato plants improves plant resistance to cold-induced oxidative stress by decreasing the rate of intracellular free-radical processes.  相似文献   

11.
植物脂质转运蛋白的研究进展   总被引:6,自引:0,他引:6  
高等植物脂质转运蛋白(lipid-transfer proteins,LTP)是一类小分子(约9 ku)的碱性蛋白质,已从多种植物中纯化出了LTP,且编码LTP的cDNA及基因也从不同植物中克隆.LTP能够在生物膜之间转运磷脂,因而认为LTP参与了细胞内生物膜形成.而近期的研究又发现LTP具信号肽,可从细胞内分泌到细胞外,位于细胞壁上,因而又对其在细胞内的转运脂质能力产生疑问.而有证据表明LTP参与了角质与腊质的形成、植物的抗病反应和植物对环境变化(温度、盐、干旱协迫)的适应.  相似文献   

12.
Fat storage‐inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)‐localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension‐cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER‐LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER‐vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.  相似文献   

13.
Plants of the Asteraceae and Hypericaceae possess secondary compounds that induce photooxidation in insect herbivores that consume them. One of the well-established modes of action of these substances is peroxidation of membrane lipids. Some herbivores counteract these defences by avoidance of light and tissues rich in phototoxins or the ability to detoxify these secondary substances. The cytochrome P-450 polysubstrate monooxygenase systems involved, the metabolic products, and a new putative toxin pump have been described. Dietary antioxidants (β-carotene, vitamin E, ascorbate) are additional defences against phototoxicity. They reduce mortality in herbivores exposed to phototoxins and some specialist herbivores have high constitutive levels. Adapted specialist insects also have higher constitutive levels of superoxide dismutase (SOD) and respond to phototoxins in their diet by the induction of catalase (CAT), glutathione reductase (GR), and increased levels of reduced glutathione (GSH). Artificial inhibition of the enzymes SOD and CAT had little effect on phototoxicity but inhibition of GSH synthesis in herbivores enhanced photooxidative effects of administered phototoxins on lipid peroxidation. While insects have many mechanisms to overcome plant photooxidants, the Asteraceae appear to have adopted a strategy of counterattack. We suggest and provide preliminary evidence that a second group of secondary substances, the sesquiterpene lactones, occurring in the Asteraceae can attack key antioxidant defences to synergise phototoxins. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Plant natural products have been extensively exploited in food,medicine,flavor,cosmetic,renewable fuel,and other industrial sectors.Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products.Compared with engineering microbes for the production of plant natural products,the potential of plants as chassis for producing these compounds is underestimated,largely due to challenges encountered in engineering plants.Knowledge in pl...  相似文献   

15.
16.
Plant responses to biotic and abiotic stress can be mediated by oxidised products and in this study we analysed the relation among some of them and the growth factor indole-3-acetic acid (IAA). The plant material used was potato tuber sliced below bud and incubated for different lengths of time before analysis. Wounding in potato tuber leads, in a very short time (0-30 min), to the generation of lipid hydroperoxides (LOOH) from polyunsaturated fatty acids (PUFA). These reactive species could cause a subsequent increase of 9 and 13-lipoxygenase (LOX, E.C.1.13.12.12.), analysed by RT-PCR and spectrophotometric assay, LOOH, Jasmonates and IAA all quantified by GC-MS analysis. The activation of 9 and 13-LOX, using different timing, leads to the formation of LOOH with a subsequent generation of jasmonates and IAA as highlighted by the addition on the potato tuber slices of salicylhydroxamic acid (SHAM), an inhibitor of LOX activity. A correlation between jasmonates and IAA resulted by testing their reciprocal influence during wounding in potato tuber. The relationship occurring among each hormone analysed during wounding underlines the fact that the jasmonates level can be regulated in situ and this can suggest a role for these compounds in potato tuber which has been underestimated up to now.  相似文献   

17.
sn-Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the acylation at sn-1 position of glycerol-3-phosphate to produce lysophosphatidic acid (LPA). LPA is an important intermediate for the formation of different types of acyl-lipids, such as extracellular lipid polyesters, storage and membrane lipids. Three types of GPAT have been found in plants, localizing to the plastid, endoplasmic reticulum, and mitochondria. These GPATs are involved in several lipid biosynthetic pathways and play important biological roles in plant development. In the present review, we will focus on the recent progress in studying the physiological functions of GPATs and their metabolic roles in glycerolipid biosynthesis.  相似文献   

18.
First encounters--deployment of defence-related natural products by plants   总被引:1,自引:0,他引:1  
Plant-derived natural products have important functions in ecological interactions. In some cases these compounds are deployed to sites of pathogen challenge by vesicle-mediated trafficking. Polar vesicle trafficking of natural products, proteins and other, as yet uncharacterized, cargo is emerging as a common theme in investigations of diverse disease resistance mechanisms in plants. Root-derived natural products can have marked effects on interactions between plants and soilborne organisms, for example by serving as signals for initiation of symbioses with rhizobia and mycorrhizal fungi. They may also contribute to competitiveness of invasive plant species by inhibiting the growth of neighbouring plants (allelopathy). Very little is known about the mechanisms of release of natural products from aerial plant parts or from roots, although there are likely to be commonalities in these processes. There is increasing evidence to indicate that pathogens and symbionts can manipulate plant endomembrane systems to suppress host defence responses and facilitate accommodation within plant cells. The relationship between secretory processes and plant interactions forms the focus of this review, which brings together different aspects of the deployment of defence-related natural products by plants.  相似文献   

19.
植物芥子油苷代谢及其转移   总被引:2,自引:0,他引:2  
芥子油苷是一类含氮、含硫的植物次生代谢产物,主要分布于十字花科植物。芥子油苷及其降解产物具有多种生化活性,在植物防御方面也有重要作用。简要介绍芥子油苷的分布、合成、降解和在植物体内的转移。  相似文献   

20.
Both the plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGR) exert beneficial effects on plant growth even under stress, but combined effect of both of them has not been evaluated yet. Present investigation was aimed to determine the responses of 2 chickpea varieties (differing in drought tolerance) to 3 PGPR viz. Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium and PGR (SA and Putrescine) on physiology of chickpea grown in sandy soil. The PGR, Salicylic acid (SA) and Putrescine (Put) were sprayed on the seedling 20 days after germination. Results revealed, synergistic effects of PGPR and PGR on chlorophyll, protein and sugar contents. Addition of PGR to PGPR inoculated plants assisted the plant in osmoregulation and amelioration of oxidative stresses and in induction of new proteins. Combined application of PGR and PGPR decreased lipid peroxidation more effectively but increased the leaf area. It is inferred that PGPR and PGR work synergistically to promote growth of plants under moisture and nutrient deficit condition of sandy soil. Since, SA induces Systemic Acquired Resistance (SAR) in plants hence the addition of SA along with PGPR may render the plant more productive and better tolerant to diseases/pathogen attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号