首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of HIV-integrase, dihydroxypyrimidine and N-methyl pyrimidone inhibitors the cellular activity of this class of compounds has been optimized by the introduction of a simple methyl substituent in the α-position of the C-2 side chains. Enhanced passive membrane permeability has been identified as the key factor driving the observed cell-based activity improvement. The rat PK profile of the α-methyl derivative 26a was also improved over its des-methyl exact analog.  相似文献   

2.
New types of azidoaryl analogs of GTP: γ-(4-azido)anilide of GTP (I), γ-(N-(4-azidobenzyl)-N-methyl)amide of GTP (II) and of GDP: β-(4-azido)anilide of GDP (III), β-(N-(4-azidobenzyl)-N-methyl)amide of GDP (IV) have been synthesized by treatment of the nucleotide in aqueous solution with N-cyclohexyl-N′-β-(4-methylmorpholinium)- ethylcarbodiimidep-toluene sulfonate and the respective amine. The analog of GTP bearing at the γ-phosphate an alkylating 2-chloroethylamino group: γ-(4-N-(2-chloroethyl)-N-methylaminobenzyl)amide of GTP (V) was prepared by the method described previously for the preparation of the analog of ATP (Knorre, D.G., Kurbatov, V.A. and Samukov, V.V. (1976) FEBS Lett. 70, 105–108). Azidoaryl analogs of GTP and GDP as well as the chloroethylaminoaryl analog of GTP compete with GDP in the formation of the binary complex EF-Tu·GDP with the respective Ki values 3.9·10?7 M (I), 2.9·10?8 M (II), 6.9·10?7 M (III), 5.0·10?7 M (IV) and 3.8·10?8 M (V) relative to GDP. constants of the complexes of the radioactively-labeled GTP analogs I, II and V with elongation factor Tu were calculated to be 8.5·10?6 M, 3.4·10?7 M and 4.6·10?8 M, respectively, or approx. 1740-, 70- and 9-times greater than that of GDP. GTP analogs I, II and V were found to substitute GTP in the stimulation of EF-Tu-dependent binding of aminoacyl-tRNA to the ribosome-mRNA complex.  相似文献   

3.
J. Whitmarsh  W.A. Cramer 《BBA》1977,460(2):280-289
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e. hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100±10 ms, compared to 6–10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t12 = 25–35 ms. The addition of uncouplers, which caused a stimulatory effect on ferricyanide reduction under the same experimental conditions, resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

4.
The cytochemical localization, by conventional methods, of lactate and glyceraldehyde-3-phosphate dehydrogenases is limited, firstly, by the solubility of these enzymes in aqueous media and, secondly, by the dependence of the final electron flow from reduced nicotinamide-adenine dinucleotide (NADH) to the tetrazolium on tissue diaphorase activity: localization is therefore that of the diaphorase, which in rabbit adductor magnus is mitochondrial. NADH has been found to have great affinity to bind in the sarcoplasmic reticulum, and, therefore, if it is generated freely in the incubation media containing 2,2',5,5'-tetra-p-nitrophenyl-3,3'-(3,3'-dimethoxy-4,4'-phenylene)-ditetrazolium chloride (TNBT) and N-methyl phenazonium methyl sulfate (PMS), it can bind there and cause a false staining. Since such a production of NADH can readily occur in the incubation media for glycolytic dehydrogenases due to diffusion of these soluble enzymes from tissue sections, the prevention of enzyme solubilization is extremely important. Fixation in formaldehyde prevented such enzyme diffusion, while at the same time sufficient activity persisted to allow for adequate staining. The incubation media contained PMS, so that the staining system was largely independent of tissue diaphorase activity. Application of these methods to adductor magnus of rabbit revealed by light microscopy, for both enzymes, a fine network which was shown by electron microscopy to represent staining of the sarcoplasmic reticulum. Mitochondria also reacted. These findings add further support for the notion that the sarcoplasmic reticulum is probably involved in glycolytic activity.  相似文献   

5.
Evidence is presented which suggests that N-methylphenazonium methosulfate suppresses the fluorescence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-poisoned chloroplasts by two mechanisms: (i) indirectly, by catalyzing the buildup of the phosphorylating potential XE across the thylaknid membrane; (ii) directly, by interacting with excited chlorophyll molecules.Arguments in support of direct quenching are as follows: (i) N-methylphenazonium methosulfate is an efficient quencher of the fluorescence of chlorophyll a in methanol; (ii) the dark-irreversible portion of the light-induced fluorescence lowering in the presence of N-methylphenazonium-methosulfate increases with the concentration of the cofactor, (iii) N-methylphenazonium methosulfate lowers the fluorescence of chloroplasts at an excitation that is too weak to allow formation of XE.Ascorbate-reduced N-methylphenazonium methosulfate (PMS-SQ) is a more efficient direct quencher of chloroplast fluorescence than oxidized PMS because the thylakoid membrane is more permeable to the reduced species. The permeability to these quenchers is enhanced by the light-induced protonation of the membrane, and suppressed by added Mg2+. Different permeability barriers appear to exist for the direct and for the XE-mediated quenching by N-methylphenazonium methosulfate, since the latter is known to be insensitive to the presence of Mg2+.  相似文献   

6.
The oxidation-reduction midpoint potentials (Em) of the following compounds have been measured in the range of pH from 3 to 12 by polarography: methyl viologen; benzyl viologen; 2-hydroxy-1,4-naphthoquinone; 2-hydroxy-1,4-anthraquinone; N,N,N′,N′,-tetramethyl-p-phenylenediamine;2,3,5,6-tetramethyl-p-phenylenediamine; phenazine; N-methylphenazonium methosulfate; N-methylphenazonium sulfonate methosulfate; N-ethylphenazonium ethosulfate; pyocyanine; neutral red; safranin; phenol red; chlorophenol red; cresol red; bromocresol purple; 2,5-dibromo-3-methyl-6-isopropylbenzoquinone and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole. Many of these previously assumed to have a simple behavior in this range have proven to be rather more complicated, and several anomalous observations have been reconciled.  相似文献   

7.
Reactions of dicarbaphosphazenes with N-methyl imidazole and fluoride ion have been studied. In contrast to earlier observations of dealkylation reactions, these reactions with imidazole led to quaternized products. Attempted fluorination of dicarbaphosphazene led to rupture of the phosphazene ring explaining the non-existence of fluorinated analog of carbaphosphazenes.  相似文献   

8.
N-methyl phenozonium methosulfate,3–(3,4-dichlorophe-nyl)–l, l-dimethylurea and carbonylcyanide-m-chlorophenyl hydrazone have similar effects on the slow, far-red induced afterglow component in intact Elodea leaves as has previously been shown for Chlorella. The first compound increases the rate constant for emission. Contrary to the case with Chlorella, it also markedly increases the total amount of light emitted from 10 sec. to infinity (maximally by 50 percent). The second compound decreases the rate constant and the amount of light, and the third compound increases the rate constant and decreases the amount of light. Electron micrographs are compared with the hypothetical units that can be deduced from the afterglow experiments, and it is found that the small thylakoids (“grana thylakoids”) have a size of the same order of magnitude as that expected for the afterglow units. The afterglow from Elodea, in contrast to that from Chlorella, is not affected by desaspidin except at extremely high concentrations. Far-red induced glucose uptake in Chlorella is not affected by 10–7M N-methyl phenazonium methosulfate, which was previously shown to have a large effect on afterglow kinetics in the same organism.  相似文献   

9.
The conformation in solution of derivatives of methyl hexopyranosides has been studied by n.m.r. The esters of methyl 2,3-O-isopropylidene-α-D-manno- and -talopyranosides as well as their 4-deoxy-4-C-methyl analog having a manno configuration exist mainly in a flattened (4,0F) chair conformation (4C1). The presence in the talo epimer of the 4-deoxy-4-C-methyl analog of the bulky methyl group on the endo side of the bicyclic system results in a skew form (3S1). The methyl 4-deoxy-2,3-O-isopropylidene-4-C-methylene-α-D-lyxo-hexopyranosides monosubstituted at C-4′ adopt, in solution, a conformation close to 3S1, whichever their configuration (cis or trans) at the double bond, as indicated by their allylic coupling constants.  相似文献   

10.
The synthesis of fluorescent derivatives of nucleosides and nucleotides, by reaction with isatoic anhydride in aqueous solution at mild pH and temperature, yielding their 3′-O-anthraniloyl derivatives, is here described. The N-methylanthraniloyl derivatives were also synthesized by reaction with N-methylisatoic anhydride. Upon excitation at 330–350 nm these derivatives exhibited maximum fluorescence emission at 430–445 nm in aqueous solution with quantum yields of 0.12–0.24. Their fluorescence was sensitive to the polarity of the solvent; in N,N-dimethylformamide the quantum yields were 0.83–0.93. The major differences between the two fluorophores were the longer wavelength of the emission maximum of the N-methylanthraniloyl group and its greater quantum yield in water. All anthraniloyl derivatives, as well as the N-methylanthraniloyl ones, had virtually identical fluorescent properties, regardless of their base structures. The ATP derivatives showed considerable substrate activity as a replacement of ATP with adenylate kinase, guanylate kinase, glutamine synthetase, myosin ATPase and sodium-potassium transport ATPase. The ADP derivatives were good substrates for creatine kinase and glutamine syntletase (γ-glutamyl transfer activity). The GMP and adenosine derivatives were substrates for guanylate kinase and adenosine deaminase, respectively. All derivatives had only slightly altered Km values for these enzymes. While more fluorescent in water, the N-methylanthraniloyl derivatives were found to show relatively low substrate activities against some of these enzymes. The results indicate that these ribose-modified nucleosides and nucleotides can be versatile fluorescent substrate analogs for various enzymes.  相似文献   

11.
N3-methyl-adenine (3MeA) is the major cytotoxic lesion formed in DNA by SN2 methylating agents. The lesion presumably blocks progression of cellular replicases because the N3-methyl group hinders interactions between the polymerase and the minor groove of DNA. However, this hypothesis has yet to be rigorously proven, as 3MeA is intrinsically unstable and is converted to an abasic site, which itself is a blocking lesion. To circumvent these problems, we have chemically synthesized a 3-deaza analog of 3MeA (3dMeA) as a stable phosphoramidite and have incorporated the analog into synthetic oligonucleotides that have been used in vitro as templates for DNA replication. As expected, the 3dMeA lesion blocked both human DNA polymerases α and δ. In contrast, human polymerases η, ι and κ, as well as Saccharomyces cerevisiae polη were able to bypass the lesion, albeit with varying efficiencies and accuracy. To confirm the physiological relevance of our findings, we show that in S. cerevisiae lacking Mag1-dependent 3MeA repair, polη (Rad30) contributes to the survival of cells exposed to methyl methanesulfonate (MMS) and in the absence of Mag1, Rad30 and Rev3, human polymerases η, ι and κ are capable of restoring MMS-resistance to the normally MMS-sensitive strain.  相似文献   

12.
Under Polonovski-type conditions, ferrocene has been found to be a convenient and efficient catalyst for the N-demethylation of a number of N-methyl alkaloids such as opiates and tropanes. By judicious choice of solvent, good yields have been obtained for dextromethorphan, codeine methyl ether, and thebaine. The current methodology is also successful for the N-demethylation of morphine, oripavine, and tropane alkaloids, producing the corresponding N-nor compounds in reasonable yields. Key pharmaceutical intermediates such oxycodone and oxymorphone are also readily N-demethylated using this approach.  相似文献   

13.
The application of gas-liquid chromatography-mass spectrometric (g.l.c.-m.s.) analysis to a number of sialic acid-containing polysaccharides of meningococcal origin has been studied. Methylation of these polysaccharides by the Hakomori conditions resulted in both O- and N-methylation. Methanolysis of the methylated polysaccharides from serogroup C [(2→9)-linked], colominic acid [(2→8)-linked], and serogroups Y and W-135 [both (1→4)-linked], yielded the respective 4,7,8,4,7,9-, and 7,8,9-tri-O-methyl derivatives of methyl N-acetyl-N-methyl-β-D-neuraminate methyl glycoside. As model compounds, methyl N-acetyl-4,7,8,9-tetra-O-methyl-α-D-neuraminate methyl glycoside and its N-methyl derivative were also synthesized. All of the methylated derivatives could be identified on the basis of their typical fragmentation-patterns, indicating that this method is applicable to the determination of the position of linkages to sialic acid residues in biopolymers.  相似文献   

14.
Energy transfer inhibition by HgCl2 has been demonstrated to be selective for certain System I partial reactions. On the basis of different HgCl2 effects on the System I reactions, reduced 2,6-dichlorophenolindophenol → methylviologen, diaminodurene → methylviologen and N-phenazine methosulfate cyclic, two sites of energy conservation associated with System I are proposed. Furthermore, these sites are in parallel with each other, in series with the site closely associated with Photosystem II and are shared between non-cyclic and cyclic electron transport.  相似文献   

15.
Synthetic N-acetyl-muramyl-l-alanyl-d-isoglutamine represents the minimal structure capable of duplicating the activity of mycobacteria in Freund's complete adjuvant. In contrast to mycobacterial adjuvant preparations, that function only in the form of water-in-oil emulsions, this compound and a second synthetic analog (N-acetyl-muramyl-l-alanyl-d-isoglutamic acid) augment the humoral immune responses of mice equally as well as aqueous solutions. Whereas N-acetyl-muramyl-l-alanyl-d-isoglutamic acid administered to guinea pigs in water-in-oil emulsion has no effect, N-acetyl-muramyl-l-alanyl-d-isoglutamine induces delayed hypersensitivity to ovalbumin and azobenezene-arsonate N-acetyl-l-tyrosine and increases the level of antibody against ovalbumin. Under these conditions, challenge with the synthetic adjuvants themselves evokes no skin responses. Moreover, Freund's complete adjuvant sensitizes guinea pigs to tuberculin and to native mycobacterial water-soluble adjuvant but not to the synthetic analogs.  相似文献   

16.
Several oxidizing agents were examined for their ability to demethylthiolate adenosine- and cytidine 5′-S-methyl phosphorothiolates.

Iodine dissolved in an aqueous potassium iodide solution or in dimethyl sulfoxide (DMSO) was the most effective demethylthiolating agent of those tested in the present study, rapidly giving the demethylthiolated products in quantitative yields. The iodine-DMSO solution demethyl-thiolated the ribonucleoside 5′-S-methyl phosphorothiolates to give ribonucleoside 5′-monophosphates even under anhydrous conditions, DMSO acting as an oxygen donor in this reaction.

Hydrogen peroxide has high demethylthiolating ability in spite of its low reaction rate. Isoamyl nitrite, an effective demethylthiolating agent for O-alkyl S-methyl phosphorothiolates, was not effective for the demethylthiolation of ribonucleoside 5′-S-methyl phosphorothiolates, because the unprotected amino groups of the S-methyl nucleotides were attacked by the reagent to give deaminated products. N-Chlorosuccinimide had no effect on the demethylthiolation of S-methyl phosphorothiolates.  相似文献   

17.
Summary Cyclic photophosphorylation catalyzed by chromatophores derived from the facultative phototroph, Rhodopseudomonas capsulata was investigated. In the absence of an external electron donor such as succinate, cyclic photophosphorylation is strongly inhibited by O2. Maximal phosphorylation rates are obtained in the presence of molecular hydrogen. Cytochrome c and bovine serum albumin have no significant effects on the reaction. However, dichlorophenolindophenol and phenazonium methosulfate are inhibitory to cyclic photophosphorylation. Cyclic photophosphorylation is sensitive to antimycin A, but highly resistant to heptylhydroxy-quinoline-N-oxide. Neither phenazonium methosulfate, nor dichlorophenolindophenol or tetramethyl-p-phenylenediamine can effect antimycin-insensitive cyclic photophosphorylation. Oligomycin strongly inhibits the phosphorylation. Overreduction caused by the ascorbate-dichlorophenolindophenol couple results in strong inhibition of phosphorylation. Addition of fumarate decreases the inhibition caused by overreduction. However, the fumarate mediated phosphorylation is nearly completely inhibited by antimycin A. Atebrine is a strong inhibitor for cyclic photophosphorylation, whereas dinitrophenol is only a weak inhibitor.
Zusammenfassung Die durch Chromatophoren aus dem fakultativ phototrophen Rhodopseudomonas capsulata katalysierte cyclische Photophosphorylierung wurde untersucht. In der Abwesenheit eines zusätzlichen Elektronendonators wie Succinat wird die cyclische Photophosphorylierung durch O2 stark gehemmt. Maximale Phosphorylierungsraten werden unter H2-Atmosphäre erzielt. Cytochrom c und Rinderserumalbumin haben keinen deutlichen Effekt auf die Reaktion. Demgegenüber haben Dichlorphenolindophenol und Phenazinmethosulfat eine hemmende Wirkung auf die cyclische Photophosphorylierung. Die cyclische Photophosphorylierung wird durch Antimycin A stark gehemmt, ist aber gegenüber Heptyl-hydroxy-chinolin-N-oxyd auffallend resistent. Weder Phenazinmethosulfat noch Dichlorphenolindophenol oder Tetramethyl-p-phenylendiamin bewirken eine antimycin-resistente Phosphorylierung. Oligomycin hemmt die Photophosphorylierung stark. Eine durch Ascorbat-Dichlorphenolindophenol verursachte Überreduktion wirkt sich stark hemmend auf die Phosphorylierung aus. In Gegenwart von Fumarat ist die durch Überreduktion bedingte Hemmung stark verringert. Diese vom Fumarat abhängige Photophosphorylierung wird jedoch durch Antimycin A beinahe vollständig gehemmt. Atebrin ist ein starker Hemmstoff für die cyclische Photophosphorylierung. Demgegenüber ist die durch Dinitrophenol bewirkte Hemmung der cyclischen Photophosphorylierung gering.

Abbreviations ADP adenosine diphosphate - ATP adenosine triphosphate - BChl bacteriochlorophyll - DNP 2,4-dinitrophenol - DCPIP dichlorophenolindophenol - FAD flavinadenine dinucleotide - FMN flavin mononucleotide - G-6-P glucose-6-phosphate - HOQNO heptylhydroxy-quinoline-N-oxide - NAD(P) nicotinamid-adenine-dinucleotide (phosphate) - PMS phenazonium methosulfate - Rh. Rhodospirillum - Rhps. Rhodopseudomonas - TMPD tetramethyl-p-phenylenediamine  相似文献   

18.
Hydrophobic anions of dipicrylamine and of sodium tetraphenylborate have been employed as probes of interfacial dipole potential variations in lipid bilayer membranes. Systematic variation of dipole potentials has been achieved by introduction of compounds incorporating N+ and B? charge centers. Distribution of hydrophilic and and hydrophobic groups relative to these charge centers has been shown to control the orientation in the membrane/solution interface of the electric dipole moment formed by these centers. Thus triphenyl-[4-trimethylphenylammonium] borate orients with the B? center, surrounded by phenyl groups, embedded in the membrane, while the smaller methylated N+ center is directed toward the aqueous phases. This orientation has been confirmed using dipicrylamine probe ions. Results obtained in this system have been interpreted quantitatively using a previously developed model incorporating discrete charge effects. A second class of compounds, tri-n-alkylamine borane (TnAB) complexes having the generic formula (CnH2n+1)3N+B?H3, have also been synthesized for this study, using even-carbon alkyls ranging from ethyl to decyl. Molecular orientation of the complex is with the N+ center and its associated alkyl groups directed into the membranes, while the protonated B? center is directed toward the aqueous phases, as confirmed by use of tetraphenylborate ions as probes.  相似文献   

19.
2,3-Dimethoxy-8,9-methylenedioxybenzo[i]phenanthridine and a few of its 12-substituted analogs are active as TOP1-targeting agents. Studies were performed to further evaluate the potential of this series of non-camptothecin TOP1-targeting agents. The influence of a hydroxymethyl, formyl, N,N-dimethylaminomethyl, 2-(N,N-dimethylamino)ethyl, 3-(N,N-dimethylamino)propyl), and 4-(N,N-dimethylamino)butyl substituent at the 12-position on TOP1-targeting activity and tumor cell growth was evaluated. In addition, the relative pharmacologic activities of the 12-carboxamide analog, as well as its N-methyl and N,N-dimethyl derivatives were assessed.  相似文献   

20.
Sphingolipids have been found to have single methyl branchings both in their long-chain base and in their N-linked acyl chains. In this study we determined how methyl-branching in the N-linked acyl chain of sphingomyelin (SM) affected their membrane properties. SM analogs with a single methyl-branching at carbon 15 (of a 17:0 acyl chain; anteiso) had a lower gel-liquid transition temperature as compared to an iso-branched SM analog. Phytanoyl SM (methyls at carbons 3, 7, 11 and 15) as well as a SM analog with a methyl on carbon 10 in a hexadecanoyl chain failed to show a gel-liquid transition above 10 °C. Only the two distally branched SM analogs (iso and anteiso) formed ordered domains with cholesterol in a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer. However, domains formed by the branched SM analogs appeared to contain less sterol when compared to palmitoyl SM (PSM) as the saturated phospholipid. Sterol-enriched domains formed by the anteiso SM analog were also less stable against temperature than domains formed by PSM. Both the 10-methyl and phytanoyl SM analogs failed to form sterol-enriched domains in the POPC bilayer. Acyl chain branching weakened SM/sterol interactions markedly when compared to PSM, as also evidenced from the decreased affinity of cholestatrienol to bilayers containing branched SM analogs. Our results show that methyl-branching weakened intermolecular interactions in a position-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号