首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Torbet  J M Freyssinet 《Biochemistry》1987,26(24):7791-7798
Low-angle neutron scattering is used to study the binding of human prothrombin to small single-bilayer vesicles consisting of phosphatidylcholine and phosphatidylserine (1/1 w/w). The radius of gyration of prothrombin indicates that it is an elongated molecule. The vesicles alone were not observed to coalesce, and their molecular weight, outer radius, and average surface area per lipid were respectively (1.6 +/- 0.32) X 10(6), 114 +/- 4 A, and 110 +/- 18 A2. These values were independent of the presence of calcium and were not altered significantly by prothrombin, which binds reversibly to the vesicle outer surface with its long axis projecting approximately radially forming a 90-A thick protein shell. From the titration of the protein-vesicle interaction, the apparent dissociation constant of the binding of prothrombin to these vesicles is estimated to be 0.8 +/- 0.4 microM. At saturation, 57 +/- 7 prothrombin molecules bind, giving 25 +/- 6 lipid residues and an area of 2900 +/- 400 A2 per prothrombin molecule on the vesicle outer surface. This area is about twice that calculated from a prolate ellipsoid model for prothrombin. However, it is close to the maximum cross-sectional area of fragment 1, the lipid binding region of prothrombin, which is coin-shaped in the high-resolution X-ray structure [Park, C.H., & Tulinsky, A. (1986) Biochemistry 25, 3977-3982]. This similarity suggests that prothrombin binding could be sterically limited.  相似文献   

2.
Integrated light-scattering (ILS) spectroscopy was used to monitor the binding of the colicin E1 channel peptide to POPC:POPG large unilamellar vesicles (LUV; 60:40, mol:mol) at acidic pH (3.5). Binding conditions were chosen such that nearly all of the channel peptide was bound to the vesicles with little free peptide remaining in solution. The increase in vesicle size upon the insertion of the channel peptide was measured by performing a discrete inversion technique on data obtained from an ILS spectrometer. Vesicle size number distributions were determined for five different systems having peptide/vesicle ratios of approximately 0, 77, 154, 206, and 257. The experiment was repeated four times (twice at two different vesicle concentrations) to determine reproducibility. The relative changes in vesicle radius upon peptide binding to the membrane vesicles was remarkably reproducible even though these changes represented only a few nanometers. A comparison of vesicle size number distributions in the absence of bound peptide was made between ILS and dynamic light scattering (DLS) data and showed similar results. However, DLS was incapable of detecting the small changes due to peptide-induced vesicle swelling. The membrane-bound volume of the colicin E1 channel peptide was approximately 177 +/- 22 nm3. These data indicate that in the absence of a membrane potential (closed channel state) the colicin E1 channel peptide inserts into the membrane resulting in a significant displacement of the lipid bilayer as evidenced from the dose-dependent increase in the vesicle radius.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Calcium accumulation by human erythrocyte inside-out vesicles was linear for at least 30 min in the presence of ATP. In untreated inside-out vesicles, 3.76 +/- 1.44 nmol of calcium/min/unit of acetylcholinesterase were transported, compared with 10.57 +/- 2.05 (+/- S.D.; n = 11) in those treated with calmodulin. The amount of calmodulin necessary for 50% activation of Ca2+ accumulation was 60 +/- 22 ng/ml (+/- S.D.; n = 4). The Km (Ca2+) for calmodulin-stimulated accumulation was 0.8 +/- 0.05 microM (+/- S.D.; n = 5) using Ca2+ /ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) buffers, or 25 microM with direct addition of unbuffered calcium. In the absence of calmodulin, these values were 0.4 and 60 microM, respectively, Km (ATP) values of 90 and 60 microM in the presence and absence of calmodulin, respectively, were measured at constant magnesium concentration (3 mM). In the presence of calmodulin, a broad pH profile is exhibited from pH 6.6 to 8.2. Maximal calcium accumulation occurs at pH 7.8. In the absence of calmodulin, the pH profile exhibits a linear upward increase from pH 7.0 to 8.2. The (Ca2+-Mg2+)-ATPase activity, measured under identical conditions, was 2.40 +/- 0.72 nmol of Pi/min/unit of acetylcholinesterase in the untreated vesicles and 11.29 +/- 2.87 nmol of Pi/min/unit of acetylcholinesterase (+/- S.D.; n = 4) in calmodulin-treated vesicles. A stoichiometry of 1.6 Ca2+/ATP hydrolyzed was determined in the absence of calmodulin; in the presence of calmodulin, this ratio was decreased to 0.94 Ca2+/ATP hydrolyzed.  相似文献   

4.
In order to study interactions between ryanodine receptor calcium release (RyR2) channels during excitation-contraction coupling in cardiac muscle, we used bilayer lipid membrane (BLM) and improved the method of cardiac sarcoplasmic vesicle fusion into BLM. We increased fusion gradient for the vesicles, used chloride ions for fusion up to concentration of 1.2 mol/l and fused the vesicles by adding them directly to the forming BLM. Under these conditions, increased probability of fusion of vesicles containing 2-7 ryanodine channels into BLM was observed. Interestingly about 10% of the channels did not gate into BLM independently, but their gating was coupled. At 53 mmol/l calcium solution, two coupled gating channels had double conductance (191 +/- 15 pS) in comparison with the noncoupled channels (93 +/- 10 pS). Activities of the coupled channels were decreased by 5 micromol/l ryanodine and inhibited by 10 micromol/l ruthenium red similarly as single RyR2 channels. We suppose that cardiac sarcoplasmic vesicles contain single as well as coupled RyR2 channels.  相似文献   

5.
The energetics of lipid vesicle-vesicle aggregation in dextran (36,000 mol wt) solutions have been studied with the use of micromechanical experiments. The affinities (free energy reduction per unit area of contact) for vesicle-vesicle aggregation were determined from measurements of the tension induced in an initially flaccid vesicle membrane as it adhered to another vesicle. The experiments involved controlled aggregation of single vesicles by the following procedure: two giant (approximately 20 micron diam) vesicles were selected from a chamber on the microscope stage that contained the vesicle suspension and transferred to a second chamber that contained a dextran (36,000 mol wt) salt solution (120 mM); the vesicles were then maneuvered into position for contact. One vesicle was aspirated with sufficient suction pressure to create a rigid sphere outside the pipette; the other vesicle was allowed to spread over the rigid vesicle surface. The aggregation potential (affinity) was derived from the membrane tension vs. contact area. Vesicles were formed from mixture of egg lecithin (PC) and phosphatidylserine (PS). For vesicles with a PC/PS ratio of 10:1, the affinity showed a linear increase with concentration of dextran; the values were on the order of 10(-1) ergs/cm2 at 10% by weight in grams. Similarly, pure PC vesicle aggregation was characterized by an affinity value of 1.5 X 10(-1) ergs/cm2 in 10% dextran by weight in grams. In 10% by weight in grams solutions of dextran, the free energy potential for vesicle aggregation decreased as the surface charge (PS) was increased; the affinity extrapolated to zero at a PC/PS ratio of 2:1. When adherent vesicle pairs were transferred into a dextran-free buffer, the vesicles did not spontaneously separate. They maintained adhesive contact until forceably separated, after which they would not read here. Thus, it appears that dextran forms a "cross-bridge" between the vesicle surfaces.  相似文献   

6.
We studied the binding of fluorescein-labeled annexin V (placental anticoagulant protein I) to small unilamellar phospholipid vesicles at 0.15 M ionic strength as a function of calcium concentration and membrane phosphatidylserine (PS) content. As the mole percentage of PS in the membrane increased from 10 to 50%, the stoichiometry of binding decreased hyperbolically from 1100 mol phospholipid/mol annexin V to a limiting value of 84 mol/mol for measurements made at 1.2 mM CaCl2. Over the same range of PS content, Kd remained approximately constant at 0.036 +/- 0.011 nM. A similar hyperbolic decrease in stoichiometry was observed with vesicles containing 10 or 20% PS when the calcium concentration was increased from 0.4 to 10 mM. Thus, the density of membrane binding sites is strongly dependent on the membrane PS content and calcium concentration. The effect of calcium on annexin V-membrane binding is proposed to be due to the formation of phospholipid-calcium complexes, to which the protein binds, rather than to an allosteric effect of calcium on protein-phospholipid affinity.  相似文献   

7.
We have developed a simple model showing how the presence or absence of Ca2+ can determine whether an uncurved or curved membrane surface is favored energetically. The model shows why fusion of vesicles with the presynaptic membrane is favored in the presence of calcium and why the budding off of vesicles is favored in the absence of calcium inside of the presynaptic membrane. The model accurately predicts the radius of a synaptic vesicle using known properties of lipids and suggests consequences of temperature change, varied stimulation rate and addition of calcium by artificial means on rates of transmitter release.  相似文献   

8.
Abraham T  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2005,44(33):11279-11285
The binding of the amphiphilic, positively charged, cyclic beta-sheet antimicrobial decapeptide gramicidin S (GS) to various lipid bilayer model membrane systems was studied by isothermal titration calorimetry. Large unilamellar vesicles composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoylphosphatidylcholine or the anionic phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, or a binary mixture of the two, with or without cholesterol, were used to mimic the lipid compositions of the outer monolayers of the lipid bilayers of mammalian and bacterial membranes, respectively. Dynamic light scattering results suggest the absence of major alterations in vesicle size or appreciable vesicle fusion upon the binding of GS to the lipid vesicles under our experimental conditions. The binding isotherms can be reasonably well described by a one-site binding model. GS is found to bind with higher affinity to anionic phosphatidylglycerol than to zwitterionic phosphatidylcholine vesicles, indicating that electrostatic interactions in the former system facilitate peptide binding. However, the presence of cholesterol reduced binding only slightly, indicating that the binding of GS is not highly sensitive to the order of the phospholipid bilayer system. Similarly, the measured positive endothermic binding enthalpy (DeltaH) varies only modestly (2.6 to 4.4 kcal/mol), and the negative free energy of binding (DeltaG) also remains relatively constant (-10.9 to -12.1 kcal/mol). The relatively large but invariant positive binding entropy, reflected in relatively large TDeltaS values (13.4 to 16.4 kcal/mol), indicates that GS binding to phospholipid bilayers is primarily entropy driven. Finally, the relative binding affinities of GS for various phospholipid vesicles correlate relatively well with the relative lipid specificity for GS interactions with bacterial and erythrocyte membranes observed in vivo.  相似文献   

9.
The interactions of unilamellar vesicles containing phosphatidylcholine (PC) and phosphatidic acid (PA) in the presence of calcium and magnesium were examined by fluorometric assays of vesicle lipid mixing, contents mixing, and contents leakage and by spray-freezing freeze-fracture electron microscopy. These results were correlated with calorimetric and fluorometric measurements of divalent cation induced lateral segregation of lipids in these vesicles under comparable conditions. PA-PC vesicles in the presence of calcium show a rapid but limited intermixing of vesicle lipids and contents, the extent of which increases as the vesicle size decreases or the PA content increases. Calcium produces massive aggregation and efficient mixing of the contents of vesicles containing high proportions of dioleoyl-PA or egg PA, but vesicle coalescence in the latter case is followed rapidly by vesicle collapse and massive leakage of contents. The effects of magnesium are similar for vesicles of very high PA content. However, in the presence of magnesium, vesicles containing lower amounts of PA exhibit "hemifusion", a mode of interaction in which vesicles aggregate and mix approximately 50% of their lipids, apparently representing the lipids of the outer monolayer of each vesicle, without significant mixing of vesicle contents or collapse of the vesicles. Fluorometric measurements of lipid lateral segregation demonstrate that lateral redistribution of lipids in PA-PC vesicles begins at submillimolar concentrations of divalent cations and shows no abrupt change at the "threshold" divalent cation concentration, above which coalescence of vesicles is observed. By correlating calorimetric and fluorometric measurements of lipid lateral segregation and mixing of vesicle components, we can demonstrate that lipid segregation is at least strongly correlated with calcium-promoted coalescence of PA-PC vesicles and is essential to the magnesium-promoted interactions of vesicles of low PA contents.  相似文献   

10.
N-ethylmalemide-sensitive factor attachment protein receptor (SNARE) has been proposed to play a critical role in the membrane fusion process. The SNARE complex was suggested to be the minimal fusion machinery. However, there is mounting evidence for a major role of calcium in membrane fusion. Hence, the role of calcium in SNARE-induced membrane fusion was the focus of this study. It revealed that recombinant v-SNARE and t-SNARE, reconstituted into separate liposomes, interact to bring lipid vesicles into close proximity, enabling calcium to drive fusion of opposing bilayers. Exposure to calcium triggered vesicle fusion at both, high potency and efficacy. The half-time for calcium-induced fusion of SNARE-reconstituted vesicles was determined to be approximately 10 s, which is two orders of magnitude faster than in its absence. Calcium acts downstream of SNAREs, since the presence of SNAREs in bilayers increases the potency of calcium-induced vesicle fusion, without significantly influencing its efficacy. Hence, this study suggests that in the physiological state in cells, both SNAREs and calcium operate as the minimal fusion machinery.  相似文献   

11.
Unilamellar vesicles of varying and reasonably uniform size were prepared from 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) by the extrusion procedure and sonication. Quasi-elastic light scattering was used to show that different vesicle preparations had mean (Z-averaged) diameters of 1340, 900, 770, 630, and 358 A (sonicated). Bilayer-phase behavior as detected by differential scanning calorimetry was consistent with the existence of essentially uniform vesicle populations of different sizes. The response of these different vesicles to treatment with poly(ethylene glycol) (PEG) was monitored using fluorescence assays for lipid transfer, contents leakage, and contents mixing, as well as quasi-elastic light scattering. No fusion, as judged by vesicle contents mixing and change in vesicle size, was detected for vesicles of diameter greater than 770 A. The diameters of smaller vesicles increased dramatically when treated with high concentrations of PEG, although mixing of their contents could not be detected both because of their small trapped volumes and because of the extensive leakage induced in small vesicles by high concentrations of PEG. Lipid transfer was detected between vesicles of all sizes. We conclude the high bilayer curvature does encourage fusion of closely juxtaposed membrane bilayers but that highly curved vesicles appear also to rupture and form larger structures when diluted from high PEG concentration, a process that can be confused with fusion. Despite the failure of PEG to induce fusion of large, uncurved vesicles composed of a single phosphatidylcholine, these vesicles can be induced to fuse when they contain small amounts of certain amphiphathic compounds thought to play a role in cellular fusion processes. Thus, vesicles which contained 0.5 mol % L-alpha-lysopalmitoylphosphatidylcholine, 5 mol % platelet activating factor, or 0.5 mol % palmitic acid fused in the presence of 30%, 25%, and 20% (w/w) PEG, respectively. However, vesicles containing 1,2-dipalmitoyl-sn-glycerol, 1,2-dioleoyl-sn-glycerol, 1-oleoyl-2-acetyl-sn-glycerol, or monooleoyl-rac-glycerol at surface concentrations up to 5 mol % did not fuse in the presence or absence of PEG. There was no correlation between the abilities of these amphipaths to induce phase separation or nonlamellar phases and their abilities to support fusion of pure DPPC unilamellar vesicles in the presence of high concentrations of PEG. The results are discussed in terms of the type of disrupted lipid packing that could be expected to favor PEG-mediated fusion.  相似文献   

12.
The cryoprotective action of synthetic glycolipids   总被引:1,自引:0,他引:1  
Egg PC vesicles frozen and thawed in the presence of carbohydrate derivatives do not incur damage normally associated with freeze thawing. Treated vesicles maintain membrane integrity as evidenced by the lack of lipid intermixing and maintenance of vesicle size following freezing and thawing. This protection is conferred at a derivative:lipid ratio of 0.4 mol/mol, significantly lower than the amount of carbohydrate required when not attached directly to the vesicle. This result indicates that only the carbohydrate at the vesicle surface is responsible for imparting stability to the membrane. This effect can be modulated by variations in the nature of the surrounding medium or alterations in the structure of the carbohydrate, suggesting that direct interactions between the carbohydrate and membrane occur at the membrane interface which are sensitive to bulk phase properties.  相似文献   

13.
Summary As determined by electron microscopy, lipid sonicated in buffer initially forms large vesicles which may be multilamellar. Prolonged sonication results in a population of vesicles of smaller, but not uniform diameters. These vesicles are bounded by only one bilayer. The lipid suspension can be partially fractionated according to size by column chromatography. A fraction of the eluate has been selected for further study. The weight-average vesicle weight and average radius of gyration are obtained by lightscattering measurements. The volume of buffer enclosed by the vesicles is determined using14C- or3H-labelled sugars as a marker. These values are in reasonable agreement with the corresponding values calculated from the size distribution of the vesicle fraction obtained by electron microscopy.  相似文献   

14.
An ultrarapid filtration method was adapted to the determination of water and solute permeability of membrane vesicles. This method consisted of measuring substance washout from vesicles first loaded with 3H2O or labeled solutes, placed on filters, and rinsed at high rates for short periods. The retention of the vesicles on the filters was analyzed and was found to be a function of the nature and porosity of the filters as well as of the vesicle origin. Washing buffer flow rate and washing duration did not affect vesicle retention. The diffusional water permeability of cholesterol-free liposomes was determined at 16 degrees C. Its value was reduced by a factor of 2.5 when the liposomes were prepared with 20% cholesterol and a threefold increase was noted when the liposomes were preincubated with gramicidin (6 mg/g lipid). Water permeability of liposomes was strongly temperature-dependent: Ea = 15.3 kcal/mol. Diffusional water permeability of pink ghosts was also measured: a value of (4.4 +/- 0.2) X 10(-3) cm/s (n = 3) was obtained at 13 degrees C. This permeability was reduced by 45.2% with 0.4 mM HgCl2. The urea permeability of intestinal and renal brush-border membrane vesicles was (1.15 +/- 0.18) X 10(-6) cm/s (n = 7) and (1.67 +/- 0.08) X 10(-6) cm/s (n = 9), respectively. The renal value was reduced by a factor of 4.4 by 100 mM thiourea. This ultrarapid filtration technique provides an accurate method of transport measurement in sealed membranes such as liposomes and plasma membrane vesicles.  相似文献   

15.
Synaptic vesicles purified on a sucrose-KCl sedimentation gradient were tested for their ability to accumulate [1-14C]acetylcholine ([1-14C]ACh) in the absence and in the presence of AH5183 and cetiedil. Kinetic studies of ACh transport showed that it was time dependent and saturable as a function of ACh concentration, with a KT of 1.2 mM. The protein-modifying agents N-ethylmaleimide and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole were powerful inhibitors of ACh uptake. In agreement with other studies, AH5183 was found to be a potent inhibitor of ACh uptake by synaptic vesicles. Inhibition was of the mixed noncompetitive type, and the inhibition constant was 45.2 +/- 3.4 nM. Cetiedil, a drug that resembles ACh, was previously shown on intact nerve endings to inhibit the translocation of newly synthesized ACh into the synaptic vesicle compartment, and we demonstrate here that cetiedil is indeed an efficient blocker of ACh uptake by isolated synaptic vesicles. It acted as a competitive inhibitor, with a Ki of 118.5 +/- 9.5 nM. Neither ATP-dependent calcium uptake nor Mg2+-ATPase activity was affected by the drugs, a finding showing their specificity toward the ACh uptake process. The binding of L-[3H]AH5183 to intact vesicles was characterized in the absence or the presence of ACh or cetiedil. Saturation experiments showed a total binding capacity of approximately 126 pmol/mg of vesicular protein and a dissociation constant of 19.9 +/- 4.1 nM under control conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se.  相似文献   

17.
The adhesion of artificially generated lipid membrane vesicles to Chinese hamster V79 fibroblasts in suspension was used as a model system for studying membrane interactions. Below their gel-liquid crystalline phase transition temperature, vesicles comprised of dipalmitoyl lecithin (DPL) or dimyristoyl lecithin (DML) absorbed to the surfaces of EDTA- dissociated cells. These adherent vesicles could not be removed by repeated washings of the treated cells but could be released into the medium by treatment with trypsin. EM autoradiographic studies of cells treated with[(3)H]DML or [(3)H]DPL vesicles showed that most of the radioactive lipids were confined to the cell periphery. Scanning electron microscopy and fluorescence microscopy further confirmed the presence of adherent vesicles at the cell surface. Adhesion of DML or DPL vesicles to EDTA-dissociated cells modified the lactoperoxidase-catalyzed iodination pattern of the cell surface proteins; the inhibition of labeling of two proteins with an approximately 60,000- dalton mol wt was particularly evident. Incubation of cells wit h (3)H-lipid vesicles followed by sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis showed that some of the (3)H-lipid migrated preferentially with these approximately 60,000-mol wt proteins. Studies of the temperature dependence of vesicle uptake and subsequent release by trypsin showed that DML or DPL vesicle adhesion to EDTA- dissociated cells increased with decreasing temperatures. In contrast, cells trypsinized before incubation with vesicles showed practically no temperature dependence of vesicle uptake. These results suggest two pathways for adhesion of lipid vesicles to the cell surface-a temperature-sensitive one involving cell surface proteins, and a temperature-independent one. These findings are discussed in terms of current models for cell-cell interactions.  相似文献   

18.
Arnulphi C  Jin L  Tricerri MA  Jonas A 《Biochemistry》2004,43(38):12258-12264
The interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) with and without free cholesterol (FC) was studied by isothermal titration calorimetry and circular dichroism spectroscopy. Parameters reported are the affinity constant (K(a)), the number of protein molecules bound per vesicle (n), enthalpy change (DeltaH degrees), entropy change (DeltaS degrees ), and the heat capacity change (DeltaC(p) degrees). The binding process of apoA-I to SUVs of POPC plus 0-20% (mole) FC was exothermic between 15 and 37 degrees C studied, accompanied by a small negative entropy change, making enthalpy the main driving force of the interaction. The presence of cholesterol in the vesicles increased the binding affinity and the alpha-helix content of apoA-I but lowered the number of apoA-I bound per vesicle and the enthalpy and entropy changes per bound apoA-I. Binding affinity and stoichiometry were essentially invariant of temperature for binding to SUVs of POPC/FC at a molar ratio of 6/1 at (2.8-4) x 10(6) M(-1) and 2.4 apoA-I molecules bound per vesicle or 1.4 x 10(2) phospholipids per bound apoA-I. A plot of DeltaH degrees against temperature displayed a linear behavior, from which the DeltaC(p) degrees per mole of bound apoA-I was calculated to be -2.73 kcal/(mol x K). These results suggested that binding of apoA-I to POPC vesicles is characterized by nonclassical hydrophobic interactions, with alpha-helix formation as the main driving force for the binding to cholesterol-containing vesicles. In addition, comparison to literature data on peptides suggested a cooperativity of the helices in apoA-I in lipid interaction.  相似文献   

19.
A J Abbott  G L Nelsestuen 《Biochemistry》1987,26(24):7994-8003
Vesicle size can be a very sensitive modulator of protein-membrane association. In addition, reactions at the collisional limit may be characteristic of many types of protein-membrane or protein-receptor interactions. To probe these effects quantitatively, we analyzed the association of blood clotting factor Va light chain (Va-LC) with phospholipid vesicles of 15-150-nm radius. The number of protein binding sites per vesicle was approximately proportional to vesicle surface area. Association rates approached the collisional limit, and the activation energy for the association reaction was 4.5 +/- 0.5 kcal/mol. In agreement with diffusional theory for this type of interaction at the collisional limit, the observed association rate constant for filling all sites was approximately proportional to the inverse of vesicle radius. This general property has important implications for many systems such as blood coagulation including possible slower association rates and higher Km values for reactions involving whole cells relative to those obtained for phospholipid vesicles. Dissociation rate constants for reactions that are near the collisional limit should also be proportional to the inverse of vesicle size if diffusional parameters are the only factors influencing dissociation. However, Va-LC bound to small unilamellar vesicles (SUVs, less than or equal to 15-nm radius) gave slower dissociation rates than Va-LC bound to large unilamellar vesicles (LUVs, greater than or equal to 35-nm radius). This indicated a change in KI, the intrinsic protein-phospholipid affinity constant for LUVs vs SUVs. The cumulative effect of association and dissociation rates resulted in higher affinity of Va-LC for SUVs than LUVs under equilibrium conditions. The latter was corroborated by competition binding studies. Furthermore, the temperature dependence of both rate constants indicated an entirely entropy-driven binding to LUVs but a largely enthalpy-driven binding to SUVs. Interactions which are largely entropic are thought to be ionic in nature. The differences observed between binding to LUVs and SUVs may reflect thermodynamic differences between these types of phospholipid structures.  相似文献   

20.
The phase and colloidal properties of phosphatidylcholine/fatty acid (PC/FA) mixed vesicles have been investigated by optical methods, acid-base titration, and theoretically as a function of temperature (5-80 degrees C), molar lipid ratio (0-1), lipid chain length (C14-C18), headgroup ionization (1.5 less than or equal to pH less than or equal to 10), vesicle concentration (0.05-32 mumol vesicle.dm-3, and ionic strength (0.005 less than or equal to J less than or equal to 0.25). Increasing the fatty acid concentration in PC bilayers causes the phase transition temperatures (at 4 less than or equal to pH less than or equal to 5) to rise until, for more than 2 FA molecules per PC molecule, the sample turbidity exhibits only two transitions corresponding to the chain-melting of the 1:2 stoichiometric complexes of PC/FA, and pure fatty acid. The former transition is into a nonlamellar phase and is accompanied by extremely rapid vesicle aggregation (with association rates on the order of Ca approximately 10(7) dm3.mol-1.s-1) and massive lipid precipitation. Fluid-phase vesicles with less than 2 FA per PC associate much more slowly (Ca approximately 10(3) dm3.mol-1.s-1), their aggregation being comparable to that of the ordered-phase liposomes. Under no conditions was the relation between the fatty acid concentration and the vesicle association rate for the fluid-phase vesicles linear. In contrast to the X-ray diffraction data, optical measurements reveal a 'pretransitional region' between the chain-melting temperature of the PC component and the temperature at which the gross transformation into a nonlamellar phase sets in. This is seen for all lipid mixtures investigated. On the relative temperature scale, lipids with different chain lengths behave qualitatively similarly; however, the effective association constants determined for samples of constant lipid concentration seem to decrease somewhat with the number of CH2 groups per chain. Fatty acid protonation, which yields electrically neutral bilayers, invariably increases the rate of vesicle association; we have measured, for example, Ca approximately 10(2) at pH approximately 7 and Ca approximately 10(7) dm3.mol-1.s-1 at pH approximately 4). Protonation of the phosphatidylcholine phosphate groups, which causes a net positive charge to accumulate on the lipid vesicles, initially increases (Ca approximately 10(8) dm3.mol-1.s-1) but ultimately decreases (Ca approximately 10(7) dm3.mol-1.s-1) the rate of association between PC/FA (1:2) mixed vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号