首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel enzyme catalysing citryl-CoA cleavage to acetyl-CoA and oxaloacetate was purified from Hydrogenobacter thermophilus TK-6, and designated citryl-CoA lyase (CCL). The citrate cleavage reaction in this organism proceeded by a unique set of two consecutive reactions: (i). citryl-CoA formation by citryl-CoA synthetase (CCS) and (ii). citryl-CoA cleavage by CCL. Purified CCL gave a single 30 kDa band in SDS-PAGE and gel filtration chromatography indicated that the native state of the enzyme exists as a trimer (alpha(3)). Citryl-CoA lyase showed low citrate synthase (CS) activity. Using an oligonucleotide probe, the corresponding gene was cloned and sequenced. The gene was expressed in Escherichia coli and recombinant CCL was also purified. The CCL protein sequence showed similarity to the C-terminal regions of ATP citrate lyase (ACL) and CS sequences in the database. By further sequence comparisons, the phylogenetic relationship between CCS, CCL, ACL and CS was investigated.  相似文献   

2.
1) Citrate synthase from pig heart has previously been shown to display complex kinetic characteristics in the reactions with citryl-CoA, resulting in inhibition. The synthase from another eukaryotic source, baker's yeast, yields the same complex kinetics. 2) Synthases from a Gram-negative prokaryote, E. coli, and from an archaebacterium, S. solfataricus, catalyse the reactions of citryl-CoA in kinetics of the Michaelis-Menten type. A comparison of the rates of citryl-CoA hydrolysis (V') and physiological reaction (V), determined with these enzymes, corresponds to ratios of V'/V approximately 1 and approximately 2, respectively. Thus, and for the first time, there is no reason left to doubt the intermediate formation of citryl-CoA in the physiological reaction. 3) The complex kinetics indicated under 1) are related to efficient formation of citrate from citryl-CoA-derived acetyl-CoA and oxaloacetate in the presence of NADH and malate dehydrogenase. These conditions are not met by the enzymes from E. coli, S. solfataricus and by proteolytically nicked synthase species from pig heart. All these enzyme variants have low affinities to either one or both of the physiological substrates. Consistent with earlier ideas, the results indicate that the inhibition mechanism is related to high affinities of the enzyme for both acetyl-CoA and oxaloacetate.  相似文献   

3.
The non-Michaelis-Menten kinetics, burst and steady-state periods, expressed by citrate synthase in the presence of citryl-CoA, were investigated by labelling experiments with trace amounts of [14C]acetyl-CoA. The results indicate that citrate becomes labelled in the reaction of liberated acetyl-CoA with the binary synthase.oxaloacetate complex that is transiently generated in the lyase reaction of citryl-CoA. Mediated by the hydrolase function of synthase, the counteracting citryl-CoA lyase and ligase reactions operate towards a transient flow equilibrium. This precedes the thermodynamic equilibrium and is established during the burst period; it is maintained under steady-state conditions and corresponds to the formation of transiently nonproductive synthase. The rates of both synthase partial reactions, therefore, are likewise affected. Oxaloacetate in the presence of acetyl-CoA competitively inhibits the hydrolysis of citryl-CoA and vice versa. In the synthase dependence of the burst periods and during the time dependence of the steady-state periods, nonproportionally more of physiological substrates participate in citrate formation. The nonproportional increase is a consequence of the continuously changing conditions to establish or to maintain the flow equilibrium, respectively, during the reaction progress. Third rate periods after the steady state result if the equilibrium conditions cannot be satisfied. High concentrations of oxaloacetate inhibit the expression of non-Michaelis-Menten kinetics by formation of nonproductive synthase.oxaloacetate complex. The supply of acetyl-CoA is then sufficient and the formation of the flow equilibrium prevented. The implication of the results with structural work is discussed.  相似文献   

4.
1. Limited proteolysis of citrate synthase from Sulfolobus solfataricus by trypsin reduced the rate of the overall reaction (acetyl-CoA + oxaloacetate + H2O----citrate + CoASH) to 4% but did not affect the hydrolysis of citryl-CoA. Experimental results indicate that a connecting link between the enzyme's ligase and hydrolase activity becomes impaired specifically on treatment with trypsin. Other proteolytic enzymes like chymotrypsin and subtilisin inactivated catalytic functions of citrate synthase, ligase and hydrolase, equally well. 2. Tryptic hydrolysis occurs at the N-terminal region of citrate synthase, but a study by SDS/PAGE revealed no difference in molecular mass between native and proteolytically nicked citrate synthase. The peptide removed from the enzyme by trypsin, therefore, contains less than about 15 amino acid residues. 3. The Km values of the substrates for both native and nicked enzyme were identical, as was the state of aggregation (dimeric) of the two enzyme species. These could be separated by affinity chromatography on Blue-Sepharose and differentiated by their isoelectric points (pI = 6.68 +/- 0.08 and pI = 6.37 +/- 0.03 for native citrate synthase and the large tryptic peptide, respectively) as well as by the N-terminus which is blocked in the native enzyme only. 4. Edman degradation of the large tryptic fragment yielded the N-terminal sequence GLEDVYIKSTSLTYIDGVNGVLRY, which is 71% identical to the N-terminal region (positions 9-32) of citrate synthase from Thermoplasma acidophilum. 5. The conversion of citrate synthase into essentially a citryl-CoA hydrolase is considered the consequence of a conformational change thought to occur on tryptic removal of the N-terminal small peptide.  相似文献   

5.
Autotrophic carbon fixation was characterized in representative members of the three lineages of the bacterial phylum Aquificae. Enzyme activity measurements and the detection of key genes demonstrated that Aquificae use the reductive tricarboxylic acid (TCA) cycle for autotrophic CO(2) fixation. This is the first time that strains of the Hydrogenothermaceae and 'Desulfurobacteriaceae' have been investigated for enzymes of autotrophic carbon fixation. Unexpectedly, two different mechanisms of citrate cleavage could be identified within the Aquificae. Aquificaceae use citryl-CoA synthetase and citryl-CoA lyase, whereas Hydrogenothermaceae and 'Desulfurobacteriaceae' use ATP citrate lyase. The first mechanism is likely to represent the ancestral version of the reductive TCA cycle. Sequence analyses further suggest that ATP citrate lyase formed by a gene fusion of citryl-CoA synthetase and citryl-CoA lyase and subsequently became involved in a modified version of this pathway. However, rather than having evolved within the Aquificae, our phylogenetic analyses indicate that Aquificae obtained their ATP citrate lyase through lateral gene transfer. Aquificae play an important role in biogeochemical processes in a variety of high-temperature habitats. Thus, these findings substantiate the hypothesis that autotrophic carbon fixation through the reductive TCA cycle is widespread and contributes significantly to biomass production particularly in hydrothermal habitats.  相似文献   

6.
The kinetics and mechanism of the citrate synthase from a moderate thermophile, Thermoplasma acidophilum (TpCS), are compared with those of the citrate synthase from a mesophile, pig heart (PCS). All discrete steps in the mechanistic sequence of PCS can be identified in TpCS. The catalytic strategies identified in PCS, destabilization of the oxaloacetate substrate carbonyl and stabilization of the reactive species, acetyl-CoA enolate, are present in TpCS. Conformational changes, which allow the enzyme to efficiently catalyze both condensation of acetyl-CoA thioester and subsequently hydrolysis of citryl-CoA thioester within the same active site, occur in both enzymes. However, significant differences exist between the two enzymes. PCS is a characteristically efficient enzyme: no internal step is clearly rate-limiting and the condensation step is readily reversible. TpCS is a less efficient catalyst. Over a broad temperature range, inadequate stabilization of the transition state for citryl-CoA hydrolysis renders this step nearly rate-limiting for the forward reaction of TpCS. Further, excessive stabilization of the citryl-CoA intermediate renders the condensation step nearly irreversible. Values of substrate and solvent deuterium isotope effects are consistent with the kinetic model. Near its temperature optimum (70 degrees C), there is a modest increase in the reversibility of the condensation step for TpCS, but reversibility still falls short of that shown by PCS at 37 degrees C. The root cause of the catalytic inefficiency of TpCS may lie in the lack of protein flexibility imposed by the requirement for thermal stability of the protein itself or its temperature-labile substrate, oxaloacetate.  相似文献   

7.
We attempted to purify ATP citrate lyase (ACL) from Hydrogenobacter thermophilus by following the citrate-, ATP- and CoA-dependent formation of an acyl-CoA species that was detected as hydroxamate. However, citryl-CoA rather than acetyl-CoA was found, indicating that the purified enzyme was a novel citryl-CoA synthetase (CCS) rather than ACL. Because the reaction catalysed by CCS corresponds to the first half of that mediated by ACL, CCS may be responsible for citrate cleavage in H. thermophilus. Thus, a novel citrate cleavage pathway, which does not involve ACL, appears to exist in this organism. Citryl-CoA synthetase is composed of two different polypeptides: a large beta subunit of 46 kDa and a small alpha subunit of 36 kDa. The corresponding genes were cloned and sequenced. The deduced amino acid sequences of the two subunits of CCS display significant similarity to those of succinyl-CoA synthetase (SCS) in the database. As a comparison, SCS was also purified from H. thermophilus and the corresponding genes were cloned and sequenced. Citryl-CoA synthetase and SCS were homologous, but showed different substrate specificity. The deduced amino acid sequences of the CCS subunits show similarity to part of the ACL sequence. The evolutionary relationship between CCS, SCS and ACL is discussed.  相似文献   

8.
The mechanism of ATP-citrate lyase has been proposed to involve a citryl-enzyme intermediate. When the enzyme is incubated with its substrates ATP and [14C]citrate, but in the absence of the final acceptor, two distinct types of citrate-containing complex can be isolated. At early time points, a highly unstable complex can be isolated by gel filtration which has a half-life of 36 s at 25 degrees C. This complex reacts rapidly with CoA, but cannot be acid-precipitated; behaviour consistent with its identification as enzyme-citryl phosphate. However, ATP-citrate lyase is also capable of undergoing a slow time-dependent covalent incorporation of radiolabel from [14C]citrate. This modification is acid-stable, non-specific, and cannot be reversed by the addition of CoA. When cytochrome is included in the reaction mixture as a heterologous acceptor, it is also citrylated. These reactions require that when ATP-citrate lyase is incubated with all its substrates except for CoA, a freely diffusible citrylating species is generated within the active site. This evidence suggests that there is no requirement for the mechanism of ATP-citrate lyase to proceed via a covalent citryl-enzyme intermediate. By analogy with succinyl-CoA synthetase, an enzyme which has a high degree of sequence similarity with ATP-citrate lyase, a simple mechanism is proposed for the enzyme in which citryl-CoA is produced by direct nucleophilic attack on citryl phosphate.  相似文献   

9.
A Basu  S Subramanian  C SivaRaman 《Biochemistry》1982,21(18):4434-4437
p-Azidobenzoyl coenzyme A functions as a linear competitive inhibitor for (3S)-citryl-CoA in the citryl-CoA oxaloacetate-lyase reaction catalyzed by the Klebsiella aerogenes deacetylcitrate lyase complex (Ki = 80 microM; (3S)-citryl-CoA Km = 67 microM). Inactivation is irreversible on photolysis of p-azidobenzoyl-CoA in the presence of the deacetylcitrate lyase complex. Mg2+ is not required for the inactivation. Inactivation is blocked by (3S)-citryl-CoA in the presence of ethylenediaminetetraacetic acid. p-Azidobenzoyl-CoA has no effect on the acetyl-CoA:citrate CoA transferase activity of both the deacetylcitrate lyase complex and its isolated transferase subunit. The stoichiometry of the CoA ester binding has been investigated by the use of p-azido[14C]benzoyl-CoA as a photoaffinity reagent. The labeling is exclusively on the lyase beta subunit of the citrate lyase complex.  相似文献   

10.
Substrate and intermediate analogue inhibitors of enzymes were prepared in which the thioester oxygen of acyl-CoA substrates is replaced by hydrogen with formation of CoA-thioethers. Experiments performed with ATP citrate lyase and S-(3,4-dicarboxy-3-hydroxybutyl)-CoA are consistent with citryl-CoA but not with citryl-enzyme being the direct precursor of the products acetyl-CoA and oxaloacetate. Consistent with these results, a previously described isotopic exchange between acetyl-CoA and [3H]CoASH, indicating the formation of an acetyl-enzyme in the reaction pathway, could not be confirmed. Substrate analogue CoA-thioethers of malate synthase are inhibitors endowed with the affinity of the substrates. Acetyl carboxylase and fatty acid synthetase are not inhibited by the substrate analogue S-ethyl-CoA; S-carboxyethyl-CoA, which could substitute for malonyl-CoA, is likewise not inhibitory. An explanation is proposed. Previously suggested roles of S-carboxymethyl-CoA, an acetyl-CoA-related inhibitor of citrate synthase, are discussed in the light of new experimental data. S-Acetyl, S-propionyl and S-carboxymethyl derivatives of 1,N6-etheno-CoA loose the high affinity of their CoA-counterparts to citrate synthase, probably because the ethylene group prevents proper binding to the enzyme.  相似文献   

11.
Fatty acid biosynthesis is essential for the survival of Mycobacterium tuberculosis and acetyl-coenzyme A (acetyl-CoA) is an essential precursor in this pathway. We have determined the 3-D crystal structure of M. tuberculosis citrate lyase beta-subunit (CitE), which as annotated should cleave protein bound citryl-CoA to oxaloacetate and a protein-bound CoA derivative. The CitE structure has the (beta/alpha)(8) TIM barrel fold with an additional alpha-helix, and is trimeric. We have determined the ternary complex bound with oxaloacetate and magnesium, revealing some of the conserved residues involved in catalysis. While the bacterial citrate lyase is a complex with three subunits, the M. tuberculosis genome does not contain the alpha and gamma subunits of this complex, implying that M. tuberculosis CitE acts differently from other bacterial CitE proteins. The analysis of gene clusters containing the CitE protein from 168 fully sequenced organisms has led us to identify a grouping of functionally related genes preserved in M. tuberculosis, Rattus norvegicus, Homo sapiens, and Mus musculus. We propose a novel enzymatic function for M. tuberculosis CitE in fatty acid biosynthesis that is analogous to bacterial citrate lyase but producing acetyl-CoA rather than a protein-bound CoA derivative.  相似文献   

12.
The aza analogue (RS)-3-hydroxy-2,5-pyrrolidinedione-3-acetic acid (6) of the five-membered citric anhydride (2) was prepared in the sequence citric acid----2-phenyl-1,3-dioxolan-4-one-5,5-diacetic acid (1)----citric acid beta-amide (3)----6 and used to resolve ambiguities in the mechanism of the citrate synthase reaction. The results yield no indication for the formation of anhydride 2 on the enzyme and favour the direct hydrolysis of the intermediate (3S)-citryl-CoA. Ammonolysis of the dioxolanone 1 in the reaction sequence described above produced not only citric acid beta-amide but also the alpha-isomer. This is shown to originate in the transient formation of anhydride 2. Hydrolysis of the dioxolanone 1 under "physiological conditions" occurs via anhydride 2, generated in intramolecular bifunctional catalysis by a protonated and a deprotonated carboxyl group. The catalytic residue Asp375 of citrate synthase is considered to operate on the enzyme as does the protonated carboxyl group in the chemical reaction and to generate enolic acetyl-CoA in cooperative catalysis with His274. This reaction of Asp375 may also facilitate the hydrolysis of citryl-CoA.  相似文献   

13.
The structures of pig heart and chicken heart citrate synthase have been determined by multiple isomorphous replacement and restrained crystallographic refinement for two crystal forms, a tetragonal form at 2·7 Å and a monoclinic form at 1·7 Å resolution, with crystallographic R-values of 0·199 and 0·192, respectively. The structure determination involved a novel application of restrained crystallographic refinement, in that the refinement of incomplete models was necessary in order to completely determine the course of the polypeptide chain. The recently determined amino acid sequence (Bloxham et al., 1981) has been fitted to the models. The molecule has substantially different conformations in the two crystal forms, and there is evidence that a conformational change is required for enzymatic activity.The molecule is a dimer of identical subunits with 437 amino acid residues each. The conformation is all α-helix, with 40 helices per dimer packing tightly to form a globular molecule. Many of the helices are kinked in various ways or bent smoothly over a large angle. Several of the helices show an unusual antiparallel packing.Each subunit is clearly divided into a large and a small domain. The two crystal forms differ by the relative arrangement of the two domains. The tetragonal form represents an open configuration with a deep cleft between the two domains, the monoclinic form is closed. The structural change from the open to the closed form can be described by an 18 ° rotation of the small domain relative to the large domain.Crystallographic analyses were performed with the product citrate bound in both crystal forms, with coenzyme A (CoA) and a citryl-CoA analogue bound to the monoclinic form. These studies establish the CoA and the citrate binding sites, and the conformations of the two product molecules in atomic detail. The subunits are extensively interdigitated, with one subunit making significant contributions to both the citrate and the CoA binding sites of the other subunit. The adenine moiety of CoA is bound to the small domain, and the pantothenic arm is bound to the large domain. The citrate molecule is bound in a cleft between the large domain. The citrate molecule is bound in a cleft between the large and small domain, with the si carboxymethylene group facing the SH arm of coenzyme A. In the monoclinic form, the cysteamine part of CoA shields the bound citrate completely from the solution. Partial reaction of CoA-SH and aspartate 375 to form aspartyl-CoA, and citrate to form citryl-CoA may occur in the crystals. The conformation of CoA is compact, characterized by an internal hydrogen bond O-52 … N-7 and a tightlybound water molecule O-51 … HOH … O-20.  相似文献   

14.
Bacterial citrate lyase, the key enzyme in fermentation of citrate, has interesting structural features. The enzyme is a complex assembled from three non-identical subunits, two having distinct enzymatic activities and one functioning as an acyl-carrier protein. Bacterial citrate lyase,si-citrate synthase and ATP-citrate lyase have similar stereospecificities and show cofactor cross-reactions. On account of these common features, the citrate enzymes are promising markers in the study of evolutionary biology. The occurrence, function, regulation and structure of bacterial citrate lyase are reviewed in this article.  相似文献   

15.
Experiments performed in polyethylene glycol and with a divalent crosslinker indicate that both mitochondrial malate dehydrogenase and aspartate aminotransferase can form hetero enzyme—enzyme complexes with either glutamate dehydrogenase or citrate synthase. In general, these as previous results indicate that complexes with the aminotransferase are favored over those with malate dehydrogenase and complexes with glutamate dehydrogenase are favored over those with citrate synthase. When the levels of enzymes are low, the only detectable complex is between the aminotransferase and glutamate dehydrogenase. Under these conditions, palmitoyl-CoA is required for complexes between the other three enzyme pairs, however, palmitoyl-CoA also enhances interactions between glutamate dehydrogenase and the aminotransferase. DPNH disrupts complexes with malate dehydrogenase and has little effect on those with the aminotransferase, while oxalacetate disrupts complexes with citrate synthase but has little effect on those with glutamate dehydrogenase. The citrate synthase-aminotransferase complex was favored in the presence of DPNH plus malate, which disrupt the other three enzyme-enzyme complexes. Glutamate dehydrogenase has a higher affinity and capacity than citrate synthase for palmitoyl-CoA. Consequently, lower levels of palmitoyl-CoA are required to enhance interactions with glutamate dehydrogenase. Furthermore, glutamate dehydrogenase can compete with citrate synthase for palmitoyl-CoA and thus can prevent palmitoyl-CoA from enhancing interactions between citrate synthase and either malate dehydrogenase or the aminotransferase.  相似文献   

16.
G Antranikian  G Gottschalk 《Biochimie》1989,71(9-10):1029-1037
Since anaerobic bacteria cannot take advantage of citrate oxidation through the reactions of the tricarboxylic acid cycle special enzymes are needed for its fermentation. The activity of citrate lyase (the key enzyme of the citrate fermentation pathway) is in most cases strictly controlled by acetylation/deacetylation and configurational changes. In order to efficiently regulate citrate metabolism the activity of various regulatory enzymes, that modulate citrate lyase activity, are in turn under stringent control. Covalent modification by phosphorylation/dephosphorylation and electron transport dependent processes are some of the regulatory mechanisms that are here involved. L-Glutamate, which signals the availability of citrate, plays a central role in the regulation of citrate metabolism by influencing the enzymes that are acting in a complex cascade system.  相似文献   

17.
In this paper, physicochemical evidence is given for the association between the pyruvate dehydrogenase complex (EC 1.2.4.1) and citrate synthase (EC 4.1.3.7) with two gel chromatographic techniques with poly(ethylene glycol) co-precipitation and with ultracentrifugation. Experiments with active enzyme gel chromatography indicate that citrate synthase also associates with pyruvate dehydrogenase complex in its functioning state. Citrate synthase binds to the isolated transacetylase core of pyruvate dehydrogenase complex, but in the binding to the whole pyruvate dehydrogenase complex the two other components of the complex are also involved. One pyruvate dehydrogenase complex can bind 10-11 citrate synthase dimers, and the dissociation constant is about 5.7-6.0 microM as determined by two independent methods. The association between the pyruvate dehydrogenase complex and citrate synthase raises the possibility of the dynamic compartmentation of acetyl-CoA in the mitochondria which results in the direction of acetyl-CoA from pyruvate towards citrate.  相似文献   

18.
Citrate synthase is an archetypal carbon-carbon bond forming enzyme. It promotes the conversion of oxaloacetate (OAA) to citrate by catalyzing the deprotonation (enolization) of acetyl-CoA, followed by nucleophilic attack of the enolate form of this substrate on OAA to form a citryl-CoA intermediate and subsequent hydrolysis. OAA is strongly bound to the active site and its alpha-carbonyl group is polarized. This polarization has been demonstrated spectroscopically, [(Kurz et al., Biochemistry 1985;24:452-457; Kurz and Drysdale, Biochemistry 1987;26:2623-2627)] and has been suggested to be an important catalytic strategy. Substrate polarization is believed to be important in many enzymes. The first step, formation of the acetyl-CoA enolate intermediate, is thought to be rate-limiting in the mesophilic (pig/chicken) enzyme. We have examined the effects of substrate polarization on this key step using quantum mechanical/molecular mechanical (QM/MM) methods. Free energy profiles have been calculated by AM1/CHARMM27 umbrella sampling molecular dynamics (MD) simulations, together with potential energy profiles. To study the influence of OAA polarization, profiles were calculated with different polarization of the OAA alpha-carbonyl group. The results indicate that OAA polarization influences catalysis only marginally but has a larger effect on intermediate stabilization. Different levels of treatment of OAA are compared (MM or QM), and its polarization in the protein and in water analyzed at the B3LYP/6-31+G(d)/CHARMM27 level. Analysis of stabilization by individual residues shows that the enzyme mainly stabilizes the enolate intermediate (not the transition state) through electrostatic (including hydrogen bond) interactions: these contribute much more than polarization of OAA.  相似文献   

19.
The fluorescence polarization of 8-hydroxypyrene (1,3,6)trisulfonate (HPT) increases upon interaction with pig heart citrate synthase. Titration of HPT with increasing concentrations of citrate synthase exhibits a hyperbolic saturation behavior, from which the dissociation constant of the enzyme-HPT complex (3.64 +/- 0.3 microM) was determined. The enzyme-HPT interaction is competitively inhibited by oxaloacetate (but not affected by acetyl CoA) with a Ki of 4.3 +/- 1.8 microM. This value is similar to the dissociation constant (Kd = 4.5 +/- 1.6 microM) for the enzyme-oxalocetate complex (determined in the absence of any effector ligand), as well as to the Km for oxaloacetate (3.9 +/- 0.7 microM) in a steady-state citrate synthase catalyzed reaction at a saturating concentration of acetyl CoA. However, the dissociation constant for the citrate synthase-oxaloacetate complex determined by the urea denaturation method is at least 25-fold lower than those determined by the other methods. This suggests an effector role of urea in strengthening the enzyme-oxaloacetate interaction. At low nondenaturing concentrations, urea inhibits the citrate synthase catalyzed reaction in an uncompetitive manner with respect to oxaloacetate, i.e., the Km for oxaloacetate decreases with an increase in urea concentration. This further suggests that urea stabilizes the interaction between citrate synthase and oxaloacetate. The effect of urea is specific for the substrate oxaloacetate, and not for the substrate analogue, HPT, although both these ligands bind citrate synthase with equal affinities, and protect the enzyme against thermal denaturation with equal magnitudes. The results presented herein are discussed in the light of known conformational states of the enzyme.  相似文献   

20.
1. The enzymes citrate lyase and isocitrate lyase catalyse similar reactions in the cleavage of citrate to acetate plus oxaloacetate and of isocitrate to succinate plus glyoxylate, respectively. 2. Nevertheless, the mechanism of action of each enzyme appears to be different from each other. Citrate lyase is an acyl carrier protein-containing enzyme complex whereas isocitrate lyase is not. The active form of citrate lyase is an acetyl-S-enzyme but that of isocitrate lyase is not a corresponding succinyl-S-enzyme. 3. In contrast to citrate lyase, the isocitrate enzyme is not inhibited by hydroxylamine nor does it acquire label if treated with appropriately labelled radioactive substrate. 4. Isotopic exchange experiments performed in H18-2O with isocitrate as a substrate produced no labelling in the product succinate. This was shown by mass-spectrometric analysis. 5. The conclusion drawn from these results is that no activation of succinate takes place on the enzyme through transient formation of succinic anhydride or a covalently-linked succinyl-enzyme, derived from this anhydride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号