首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The diel activity levels and spatial distribution of roach Rutilus rutilus differed markedly between two shallow lakes of different environmental state. The movements of roach (12–25 cm L T), with surgically implanted mini‐radio transmitters, were monitored regularly during several 48 h tracking sessions in a clearwater and in a turbid lake. In both lakes, the roach in general were most active during dawn and dusk and least active during the night. Activity level in midsummer was lowest around noon in the clear lake and high around noon in the turbid lake. In summer, roach in the clear lake stayed passively in a restricted area of water lilies during the day and moved into the central part of the lake during the night. In the turbid lake, roach were dispersed all over the lake during the day and moved close to the shoreline at night. Predator : prey fish ratios did not differ in the two lakes, however the observed behaviour of roach in the clearwater lake may be explained by a larger predation pressure from fish and birds, both being favoured in the clear water.  相似文献   

2.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   

3.
An analysis of the diet of 0+ perch, smelt and roach caught at night of the pelagial of a mesotrophic lake showed that their food was composed mainly of herbivorous and predatory cladocerans, copepods and Chaoborus larvae during summer, and of herbivorous cladocerans and copepods during October. An analysis of habitat use by juveniles revealed separation among the species: roach occurred in the upper, perch and smelt in the deeper water layers. Food and habitat were alternatively partitioned among the juveniles. In early summer the lowest food overlap between perch and smelt coincided with high habitat overlap. In October high food overlap between perch and smelt corresponded with low habitat overlap. Smelt and roach fry used common food resources throughout the season, but they were segregated in habitat.  相似文献   

4.
Behaviour of large perch Perca fluviatilis was studied in two lakes differing in environmental state i.e. mesotrophic v. hypereutrophic. A total of 20 adult perch P. fluviatilis (29–42 cm total length) in each lake were tagged with radio‐transmitters, tracked and located eight times a day during six 24 h tracking periods over a year, enabling detection of differences in diel activity patterns and habitat use during summer and winter under two different environmental regimes. During summer, P. fluviatilis in the mesotrophic lake showed a distinct crepuscular activity pattern and a change from pelagic residency during daytime towards the littoral zone at night. In contrast, P. fluviatilis in the hypereutrophic lake were active during the entire diel cycle and were spread throughout the lake also during dark. During winter, crepuscular patterns of activity were seen in both lakes. Condition factor of large P. fluviatilis did not differ between the two lakes. Thus, it is suggested that P. fluviatilis in the hypereutrophic turbid lake adopted an alternative behaviour for successful foraging, being uniformly active throughout the diel cycle.  相似文献   

5.
SUMMARY 1. Pelagic and epipelic microalgal production were measured over a year in a pre-defined area (depth 0.5 m) in each of two lakes, one turbid and one with clear water. Further estimates of epiphytic production within reed stands were obtained by measuring production of periphyton developed on artificial substrata.
2. Total annual production of phytoplankton and epipelon was 34% greater in the turbid lake (190 g C m−2 year−1) than in the clearwater lake (141 g C m−2 year−1). However, the ratio of total production to mean water column TP concentration was two fold greater in the clearwater lake.
3. Phytoplankton accounted for the majority of the annual production (96%) in the turbid lake, while epipelic microalgal production dominated (77%) in the clear lake. The relative contribution of epipelic algae varied over the year, however, and in the turbid lake was higher in winter (11–25%), when the water was relatively clear, than during summer (0.7–1.7%), when the water was more turbid. In the clearwater lake, the relative contribution of epipelon was high both in winter, when the water was most clear, and in mid-summer, when phytoplankton production was constrained either by nutrients or grazing.
4. Compared with pelagic and epipelic primary production, epiphytic production within a reed stand was low and did not vary significantly between the lakes.
5. The study supports the theory of a competitive and compensatory trade-off between primary producers in lakes with contrasting nutrient concentrations, resulting in relatively small differences in overall production between clear and turbid lakes when integrating over the season and over different habitats.  相似文献   

6.
Synopsis Most of the lakes in The Netherlands are turbid and without vegetation. This is regarded as the result of increasing eutrophication within the last decades. Under these conditions common bream, roach, and white bream are the most common cyprinids. In six shallow (1–3 m), wind exposed lakes the abundance of common bream and roach was linked to the abundance of pikeperch; bream dominated when pikeperch was abundant, but when the latter species was rare, roach was dominant and the biomass of bream was reduced. The biomass of white bream was always relatively low. In lake Tjeukemeer the distribution of roach < 20 cm fork length (FL) and bream was also related to the distribution of pikeperch. Only roach > 20 cm FL managed to coexist with pikeperch in the open water area, whereas roach < 20 cm was confined to the littoral zone where pikeperch was nearly absent. Bream occurred mainly in the open water and avoided the littoral zone where it competed with roach. White bream occupied an intermediate position, occurring in relatively low density both in the littoral zone and in open water. The importance of predation and competition in determining the distribution and abundance of roach and common bream in the eutrophic lakes of The Netherlands is discussed.  相似文献   

7.
1. Environmental changes such as eutrophication and increasing inputs of humic matter (brownification) may have strong effects on predator–prey interactions in lakes through a reduction in the visual conditions affecting foraging behaviour of visually oriented predators. 2. In this experiment, we studied the effects of visual range (25–200 cm) in combination with optically deteriorating treatments (algae, clay or brown humic water) on predator–prey interactions between pike (Esox lucius) and roach (Rutilus rutilus). We measured effects on reaction distance and strike distance for pike and escape distance for roach, when pike individuals were exposed to free‐swimming roach as well as to roach held in a glass cylinder. 3. We found that reaction distance decreased with decreasing visual range caused by increasing levels of algae, clay or humic matter. The effect of reaction distance was stronger in turbid water (clay, algae) than in the brown water treatment. 4. Strike distance was neither affected by visual range nor by optical treatment, but we found shorter strike distances when pike attacked roach using visual cues only (roach held in a cylinder) compared to when pike could use multiple senses (free‐swimming roach). Escape distance for roach was longer in turbid than in brown water treatments. 5. Changes in environmental drivers, such as eutrophication and brownification, affecting the optical climate should thus have consequences for the strength of predator–prey interactions through changes in piscivore foraging efficiency and prey escape behaviour. This in turn may affect lake ecosystems through higher‐order interactions.  相似文献   

8.
Hosper  S. H.  Jagtman  E. 《Hydrobiologia》1990,200(1):523-534

Eutrophication control is one of the major issues in the environmental policy in The Netherlands. As a result of international action programmes the average phosphorus loading of freshwater systems should decrease by 50% between 1985 and 1995. However, in many cases the restoration of water quality requires additional measures. Recovery is hampered by the structure and functioning of the present food-chain.

The feeding behaviour of the dominant fish species in Dutch lakes, bream and roach, tend to impose a homeostasis on the system, resisting restoration of water quality. In shallow lakes, biomanipulation, including drastic reduction of fish-stocks, may induce a shift from a stable ‘turbid-water state’ to a stable ‘clear-water state’.

To assess the possibilities of biomanipulation for the restoration of a particular lake, three questions are relevant: (1) is a drastic reduction of fish-stocks feasible?, (2) will a shift occur from ‘turbid to clear’ after the fish reduction? and (3) will the new situation of clear water be stable? This paper focuses attention on the last two questions. The increase in water clarity, following fish reduction, largely depends on the increase in the density of the Daphnia-population and the contribution of benthivorous fish to the resuspension of sediments. A ‘turbid to clear’ shift may be expected if the total biomass of planktivorous and benthivorous fish is reduced to levels<50 kg ha?1. The stability of the achieved clear-water state largely depends on the development of submerged macrophytes in the lake and on the level of nutrient loading. It is tentatively concluded that a stable clear-water state may be expected at initial total-P concentrations<0.10 mg l?1.

Because the water managers in The Netherlands have no fishing rights, they have to.co-operate with anglers and commercial fishermen to apply biomanipulation as a tool for water management.

  相似文献   

9.
1. Regular diel habitat shifts in roach were detected by hydro‐acoustics in five moderately eutrophic, stratifying (maximum depth 24–27 m) and approximately circular lakes (of surface area 15, 75, 125, 300 and 900 ha and diameters 250, 600, 1000, 1700 and 2600 m) in north‐eastern Poland in the years 1998–2000, when the lakes were free of smelt and other typical offshore planktivores, and their offshore areas were completely free of fish during the day. 2. The diel change in roach distribution was shown to assume a similar pattern in each lake: fish migrated from a daytime littoral refuge towards the centre of the lake at dusk, and returned to the littoral refuge at dawn. After sunset, fish gradually dispersed offshore until they covered the entire lake area in each of the three smaller lakes. In each of the two larger lakes, only small numbers of fish were seen in the central area at night, implying that the centre of the lake retained high food availability throughout the summer. 3. Inshore–offshore gradients in zooplankton prey density, body size, and numbers of eggs per clutch were weak or undetectable in the two smallest lakes, but strong and persistent in the three larger lakes, with Daphnia densities 5–30 times as high and body length 1.2–1.5 times as great in the central area as inshore. 4. The likely increase in the potential predation risk with distance from the littoral daytime refuge was found to be compensated by increased food gains in those fish which moved offshore at dusk to feed within a short time window, when light intensity was lower to make the risk reduced, but still high enough to see zooplankton prey. The benefit because of increased prey acquisition was greatest in the centre of the largest lake (at 1300 m from the shore), as revealed from gut inspections of roach and bleak trawl‐sampled at different distances from the edge of the reed belt, and seen as a gradual, order‐of‐magnitude increase in the volume of food in the foregut, The food volume against distance‐from‐shore regression was highly significant on each of the four sampling dates in the largest lake, in spite of the wide variability of food volume in individual fish.  相似文献   

10.
Horppila  Jukka  Kairesalo  Timo 《Hydrobiologia》1992,(1):323-331
Lake Vesijärvi, southern Finland, suffered sewere eutrophication by sewage effluent from the city of Lahti during the 1960's and the early 1970's. The municipal sewage loading was diverted from the lake in 1976 and the lake started to recover. However, in the 1980's blue-green algal blooms increased again and the recovery of the lake faded. Enclosure experiments demonstrated that high roach (Rutilus rutilus) biomass is one of the key factors in the fading recovery of the lake. In this study, the influence of roach and another cyprinid fish species (bleak, Alburnus alburnus) to planktonic algal productivity and biomass in Lake Vesijärvi was examined. Enclosure experiments in the field showed the impacts of planktivorous bleak on water quality; in an enclosure with a density of 1 fish m–2 average daily algal production (1370 mg C m–2) and chlorophyll-a concentration (50–90 µg 1–1) were more than twice that in an enclosure without fish. Laboratory experiments showed that the availability of planktonic food affects the foraging behaviour of roach and consequently the internal nutrient loading from the sediment into the water. Roach caused the highest phosphorus loading and turbidity when there was no zooplanktonic food available in the water. The possible interactions between planktivorous and omnivorous fish species are discussed.  相似文献   

11.
Environmental change may affect predator-prey interactions in lakes through deterioration of visual conditions affecting foraging success of visually oriented predators. Environmental change in lakes includes an increase in humic matter causing browner water and reduced visibility, affecting the behavioural performance of both piscivores and prey. We studied diurnal patterns of prey selection in piscivorous pikeperch (Sander lucioperca) in both field and laboratory investigations. In the field we estimated prey selectivity and prey availability during day and night in a clear and a brown water lake. Further, prey selectivity during day and night conditions was studied in the laboratory where we manipulated optical conditions (humic matter content) of the water. Here, we also studied the behaviours of piscivores and prey, focusing on foraging-cycle stages such as number of interests and attacks by the pikeperch as well as the escape distance of the prey fish species. Analyses of gut contents from the field study showed that pikeperch selected perch (Perca fluviatilis) over roach (Rutilus rutilus) prey in both lakes during the day, but changed selectivity towards roach in both lakes at night. These results were corroborated in the selectivity experiments along a brown-water gradient in day and night light conditions. However, a change in selectivity from perch to roach was observed when the optical condition was heavily degraded, from either brown-stained water or light intensity. At longer visual ranges, roach initiated escape at distances greater than pikeperch attack distances, whereas perch stayed inactive making pikeperch approach and attack at the closest range possible. Roach anti-predatory behaviour decreased in deteriorated visual conditions, altering selectivity patterns. Our results highlight the importance of investigating both predator and prey responses to visibility conditions in order to understand the effects of degrading optical conditions on piscivore-prey interaction strength and thereby ecosystem responses to brownification of waters.  相似文献   

12.
13.
Food web management is a frequently used lake restoration method, which aims to reduce phytoplankton biomass by strengthening herbivorous zooplankton through reduction of planktivorous fish. However, in clay‐turbid lakes several factors may reduce the effectivity of food web management. Increasing turbidity reduces the effectivity of fish predation and weakens the link between zooplankton and phytoplankton. Therefore, the effects of fish stock manipulations may not cascade to lower trophic levels as expected. Additionally, in clay‐turbid conditions invertebrate predators may coexist in high densities with planktivorous fish and negate the effects of fish reductions. For instance, in the stratifying regions of the clay‐turbid Lake Hiidenvesi, Chaoborus flavicans is the main regulator of cladocerans and occupies the water column throughout the day, although planktivorous Osmerus eperlanus is very abundant. The coexistence of chaoborids and fish is facilitated by a metalimnetic turbidity peak, which prevents efficient predation by fish. In the shallow parts of the lake, chaoborids are absent despite high water turbidity. We suggest that, generally, the importance of invertebrate predators in relation to vertebrate predators may change along turbidity and depth gradients. The importance of fish predation is highest in shallow waters with low turbidity. When water depth increases, the importance of fish in the top‐down regulation of zooplankton declines, whereas that of chaoborids increases, the change along the depth gradient being moderate in clear‐water lakes and steep in highly turbid lakes. Thus, especially deep clay‐turbid lakes may be problematic for implementing food web management as a restoration tool.  相似文献   

14.
Waterfowl,macrophytes, and the clear water state of shallow lakes   总被引:1,自引:0,他引:1  
The importance of lake ecosystems for waterfowl remains a topic of debate. In order to assess how temporal variations in lake features, specifically shifts between alternative stable states, may interact with the waterfowl fauna, we performed a long-term (22 years) study of the shallow Lake Krankesjön, southern Sweden. Lower total numbers of waterfowl occurred during periods with low macrophyte cover and turbid water, than when submersed macrophytes flourished and the water was clear. Some specific functional groups of waterfowl, such as herbivores, invertebrate, and fish feeders, showed a positive relation to clear water and high macrophyte cover. Hence, our data suggest that some migratory waterfowl may select lakes based on water quality, thereby adjusting their large-scale migratory routes. On the other hand, omnivorous waterfowl exhibited their highest abundances during turbid conditions. Furthermore, waterfowl not primarily relying on food from the lake showed no response to fluctuations in turbidity or macrophyte cover, but followed regional trends in population dynamics. In our study lake, L. Krankesjön, we estimated that waterfowl remove less than 3% of the macrophyte biomass during a stable clear-water state with lush macrophyte beds. However, during transition periods between alternative stable states, when macrophyte biomass is lower and the plants already stressed, the consumption rate of waterfowl may have a stronger effect on lake ecosystem functioning.  相似文献   

15.
16.
Shallow lakes respond in different ways to changes in nutrient loading (nitrogen, phosphorus). These lakes may be in two different states: turbid, dominated by phytoplankton, and clear, dominated by submerged macrophytes. Both states are self-stabilizing; a shift from turbid to clear occurs at much lower nutrient loading than a shift in the opposite direction. These critical loading levels vary among lakes and are dependent on morphological, biological, and lake management factors. This paper focuses on the role of wetland zones. Several processes are important: transport and settling of suspended solids, denitrification, nutrient uptake by marsh vegetation (increasing nutrient retention), and improvement of habitat conditions for predatory fish. A conceptual model of a lake with surrounding reed marsh was made, including these relations. The lake-part of this model consists of an existing lake model named PCLake. The relative area of lake and marsh can be varied. Model calculations revealed that nutrient concentrations are lowered by the presence of a marsh area, and that the critical loading level for a shift to clear water is increased. This happens only if the mixing rate of the lake and marsh water is adequate. In general, the relative marsh area should be quite large in order to have a substantial effect. Export of nutrients can be enhanced by harvesting of reed vegetation. Optimal predatory fish stock contributes to water quality improvement, but only if combined with favourable loading and physical conditions. Within limits, the presence of a wetland zone around lakes may thus increase the ability of lakes to cope with nutrients and enhance restoration. Validation of the conclusions in real lakes is recommended, a task hampered by the fact that, in the Netherlands, many wetland zones have disappeared in the past.  相似文献   

17.
1. Research has often focused on the pelagic areas of lakes; the littoral zone has received less attention. The few studies concerning fish distribution in littoral habitats have concentrated on stands of submersed macrophytes, whereas other littoral habitat types have seldom been investigated. 2. This study aimed to predict the occurrence of juvenile fish in several littoral habitats of a shallow lake as a function of food availability, complexity of habitat structure, water depth and substrate. Habitats comprising reed, woody structures, and two open water areas differing in depth were sampled for fish and invertebrate biomasses on two shores, over 6 months and during both daylight and at night. 3. The juvenile fish community consisted almost exclusively of 0+ and 1+ roach and perch. There was a strong diel component in habitat use, with a predominant occurrence of fish in complex habitats (mainly woody structures) during the day, and a partial migration towards the open habitats at night, more strongly expressed in roach than in perch. 4. The diet of all fish groups was relatively constant over the seasonal cycle, and was independent of habitat. There was a higher degree of planktivory in roach than in perch, but both species fed on benthic macroinvertebrates to a substantial extent. 5. According to a logistic regression model, the biomass of potential food organisms in the different habitats had little predictive effect on the spatial distribution of the fish, whereas the structural complexity of the habitats combined with the diel cycle explained about 28% of the occurrence patterns in 0+ and 1+ perch and 1+ roach.  相似文献   

18.
In this study, the combined influence of vegetation density and water turbidity on habitat utilization of a prey fish, 0+ year perch Perca fluviatilis , under predation risk (pike, Esox lucius ) was investigated. The vegetated habitat was overall preferred over the open habitat in the presence of a predator. The level of turbidity, and to a lesser extent vegetation density, however, influenced the response of 0+ year perch. The use of the vegetated habitat was lower in very turbid than in clear and turbid conditions, suggesting reduced antipredator behaviour in very turbid water. The effect of vegetation density on antipredator behaviour was only present in clear water, where the use of a structural refuge decreased with increasing vegetation density. No such effect was observed in turbid and very turbid water. The results showed that the structuring role of vegetation or habitat complexity may diminish with increased turbidity. The observed masking effect of turbidity suggests that predator‐prey interactions in vegetated habitats are more complex than what has generally been thought.  相似文献   

19.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

20.
Development of fish communities in lakes after biomanipulation   总被引:2,自引:0,他引:2  
Biomanipulation measures in the Netherlands are usually a combination of a drastic fish stock reduction and an introduction of pike fingerlings. In three small shallow lakes (Noorddiep, Bleiswijkse Zoom and Zwemlust) these measures resulted in a clear water state and the development of macrophytes. After the measures the fish community developed differently because of the new physical and biological conditions. Results of lake Noorddiep and lake Bleiswijkse Zoom showed that the fish community became more divers. Bream and carp became less dominant and were partly replaced by roach and perch. The importance of the main predator pike-perch was strongly reduced and replaced by pike and perch. The share of piscivorous fish in the total fish stock increased at all sites. The recruitment of young-of-the-year was similar or even higher in the clear overgrown areas than in the turbid water before the measures, but the recruitment of young-of-the-year to older fish differed between the species. Predation by pike and perch could not control the young-of-the-year cyprinids, but their predation may have contributed to the shift from bream to roach, because of selective predation on bream in the open water, while roach was hiding in the vegetation. The macrophytes provide new refugia and feeding conditions that favour roach and perch, but offer relatively poor survival conditions for bream and carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号