首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seiji Tokumasu 《Mycoscience》1998,39(4):409-416
Experimental studies were carried out to investigate seasonal effects on the fungal succession in the interior or decaying pine needles. At different seasons, the needles fallen for a short period were collected and marked, then placed on the surface of the O horizon in a pine forest. The needles were removed at intervals and their interior fungal communities were examined by using a surface sterilization technique. The successions of interior colonizers observed on the fallen needles at four different times are roughly divided into three groups based on the composition of species colonizing from litter. Seasonal shifts in the species combination were discussed with climatic and biotic factors. As a result, temperature at the surface of litter appeared to be a cardinal factor contributing to these seasonal changes in the succession of interior colonizers. Contributions to Sugadaira Montane Research Center, No. 164.  相似文献   

2.
Precise knowledge of the fungal succession in the litter of coniferous forests will facilitate understanding litter decomposition, in which fungi play a major role. We investigated the development of a fungal community during 3 yr of Picea abies litter decomposition in three control forest sites and three sites where bark-beetle attacks had killed adult trees and stopped the yearly input of fresh litter, using both cultivation from needles and terminal restriction-fragment length polymorphism analysis. The two methods revealed similar dominant species during the fungal succession. Members of the Dothideales, Eurotiales and Helotiales predominated during the initial stage of decay, whereas members of Agaricales appeared only occasionally during this stage. The onset of the latter began from the seventh month, with a peak occurring after 1 yr. Bark-beetle attacks hastened litter decomposition and decreased fungal diversity only during the initial stages of decomposition.  相似文献   

3.
During litter decay, different fungal decomposer genera reach their highest relative abundance at different times. We tested the long-standinghypothesis that this “peak decay stage” of fungi is related to the activity of their fungal extracellular enzymes that break down various plant biopolymers and related as well to the growth rate of fungi. Using 50 decomposer fungal species, spanning a range of peak decay stages, we measured (1) the activity of four polysaccharidases and two oxidases generated by each species, and (2) fungal species’ growth rates. We found that the activity of cellobiohydrolase and growth rate were negatively correlated with peak time point for filamentous fungi; fungi peaking early had greatest cellobiohydrolase activity and fastest growth. No relationships were found between peak decay stage and enzymes or growth for yeasts. These data suggest growth and resource use are important factors shaping succession during decay by the main fungal decomposers, but as-yetuninvestigated traits may explain the remainder of the variation in succession.  相似文献   

4.
Seiji Tokumasu 《Mycoscience》1996,37(3):313-321
Mycofloral succession on decaying pine needles in aPinus densiflora forest on a moder site was investigated in Sugadaira, Nagano Pref., central Japan. Dead needles on the tree, fallen needles obtained from two recognizable sublayers of the L layer and the upper sub-layer of the F1 layer in the organic horizon were examined for their fungal flora using both washing and surface sterilization techniques. The major interior colonizer in freshly fallen needles varied with the season:Chaetopsina fulva in summer andSelenosporella curvispora in the other seasons.Thysanophora penicillioides was a remarkable external colonizer of freshly fallen needles in summer, while soil fungi were external colonizers of such needles in the other seasons. A possible successional change of major fungi with the needle decay was suggested. The observed seasonal alternation of the species colonizing freshly fallen needles was discussed in relation to climatic conditions. Contributions from Sugadaira Montane Research Center, No. 152.  相似文献   

5.
Interactions between needles of Pinus resinosa and ectomycorrhizal fungi   总被引:1,自引:1,他引:0  
Relatively little is known about the factors controlling ectomycorrhizal fungal communities. One possible factor is forest litter chemistry. In a series of experiments we demonstrated that the growth of ectomycorrhizal fungi able to colonize red pine ( Pinus resinosa Ait.) are differentially affected by red pine needles and needle chemical components. For example, water extracts of pine needles stimulated the growth of Suillus intermedius (Smith & Thiers) Smith & Thiers and inhibited the growth of Amanita rubescens Pers. Catechin and epicatechin gallate, components of the water extract, acted similarly to the extract. The volatile compounds α- and β-pinene also had differential effects on the growth of the various species of ectomycorrhizal fungi. Our results suggest that forest litter chemistry has the potential differentially to affect the growth of ectomycorrhizal fungal species and so could affect the structure of ectomycorrhizal fungal communities.  相似文献   

6.
Osono T 《Mycologia》2005,97(3):589-597
Decomposition processes of Swida controversa leaves were investigated in initially sterilized (fungi-excluded) and nonsterilized freshly fallen leaves to examine the relationship between chemical changes and fungal succession during decomposition and the effect of exclusion of previously established phyllosphere fungi from leaves on subsequent decomposition and fungal succession. Fifteen species were isolated frequently from decomposing leaves with surface-disinfection and washing methods. These fungi were divided into early and late colonizers according to their occurrence during decomposition. The 1.5 y decomposition process was divided into three stages characterized by different dominant organic chemical constituents. A clear relationship was demonstrated between chemical changes and fungal succession. Total hyphal length and frequencies of some early colonizers were reduced in initially sterilized leaves at 3 wk, but this had no significant effect on loss of litter mass or chemical changes during the first 3 wk or on the subsequent decomposition and fungal succession.  相似文献   

7.
Seiji Tokumasu 《Mycoscience》1998,39(4):417-423
Field experiments were carried out to investigate influences of seasonal change on the fungal succession occurring on the surface of decaying pine needles at a moder site in Japan. At different seasons, the needles fallen for a short period were collected and marked, then placed on the surface of the O horizon. The needles were removed at intervals and their fungal communities were examined by using a washing technique. Unlike the successions of interior colonizers studied at the same time, those of surface colonizers observed on the fallen needles at four different times are roughly similar to each other.Thysanophora penicillioides was the major first colonizer on the sample needles from the O horizon, andTrichoderma species followed it. In an experiment started in late autumn, three dematiaceous fungi,Chloridium viride var.chlamydosporis, Sporidesmium omahutaense, andChalara sp., commonly occurred and contributed to the darkening of colonized needles. Seasonal variation in climate may have a stronger effect on internal colonizers than external colonizers of needles. Contributions from Sugadaira Montane Research Center, No. 165.  相似文献   

8.
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.  相似文献   

9.
The mycoflora in living symptomless needles of Pinus sylvestris was investigated in three 5–8 year-old plantations in Southern Poland from 1987 to 1990. The needles from trees with symptoms of the autumn needle cast and from trees without such symptoms were treated separately. In total 960 of the current year and 720 of the previous year needles were collected. Fungi were isolated from 80.1 % of needles and 3671 cultures belonging to 86 fungal taxa were obtained. Seven species of fungi showed the rate of infection above 5%: Anthostomella formosa, Lophodermium seditiosum, Cydaneusma minus, Cenangium ferruginosum, Lophodermium pinastri, Sclerophoma pythiophila and Anthostomella pedemontana. The frequency of infection of needles by these species depended on needle age, season of the year, calendar year and site. The spread of fungi in needles was not too high. They were found in 35.8 % of needle sections (isolations were made from 10,080 sections). The needle base, middle and top were infected with more or less similar frequency, but the differences were considerable for the individual fungal species. Anthostomella formosa and A. pedemontana generally occurred slightly more frequently on needles of trees without symptoms of the autumn needle cast, while the other four common species ( Cenangium ferruginosum, Cyclaneusma minus, Lophodermium pinastri, Lophodermium seditiosum ) generally occurred more frequently on needles of trees showing such symptoms. There were considerable differences in this respect among plantations investigated.  相似文献   

10.
Plant interactions with soil biota could have a significant impact on plant successional trajectory by benefiting plants in a particular successional stage over others. The influence of soil mutualists such as mycorrhizal fungi is thought to be an important feedback component, yet they have shown benefits to both early and late successional plants that could either retard or accelerate succession. Here we first determine if arbuscular mycorrhizal (AM) fungi differ among three stages of primary sand dune succession and then if they alter growth of plants from particular successional stages. We isolated AM fungal inoculum from early, intermediate or late stages of a primary dune succession and compared them using cloning and sequencing. We then grew eight plant species that dominate within each of these successional stages with each AM fungal inoculum. We measured fungal growth to assess potential AM functional differences and plant growth to determine if AM fungi positively or negatively affect plants. AM fungi isolated from early succession were more phylogenetically diverse relative to intermediate and late succession while late successional fungi consistently produced more soil hyphae and arbuscules. Despite these differences, inocula from different successional stages had similar effects on the growth of all plant species. Host plant biomass was not affected by mycorrhizal inoculation relative to un‐inoculated controls. Although mycorrhizal communities differ among primary dune successional stages and formed different fungal structures, these differences did not directly affect the growth of plants from different dune successional stages in our experiment and therefore may be less likely to directly contribute to plant succession in sand dunes.  相似文献   

11.
Dematiaceous mitosporic fungi darkening decaying fir needles on the ground were studied. Fungal communities on decaying, blackish fir needles were investigated in nine sites of the Kanto district, Japan, using a washing method. A total 108 taxa was recorded from 540 sampled needles. Among abundantly occurring dematiaceous fungi,Anungitea continua, A. uniseptata andEndophragmiella uniseptata were recognized as the major colonizers, forming a hyphal network on the surface of decaying fallen needles and darkening them. The effects of climate on the distributions of seven dematiaceous fungi included the major colonizers were analyzed. The abundance (proportion of needles colonized by a fungal species) ofChaetopsina fulva showed a significantly positive correlation with annual mean air temperature at each sampling site. No other significant correlations between the selected climatic factors and the distributions of dematiaceous fungi were recognized. Contribution No. 176 from Sugadaira Montane Research Center, University of Tsukuba.  相似文献   

12.
喀斯特是我国南方广泛分布的地貌类型,土壤真菌对喀斯特植被演替恢复具有重要调节功能,不同石漠化程度的喀斯特区植被演替受到土壤微生物影响,因此研究不同石漠化区域植被演替阶段的土壤真菌组成及多样性,探索土壤真菌在喀斯特植被演替过程中的作用机制具有重要意义。本文采用时空替代法采集了不同石漠化程度(潜在、中度和强度)的喀斯特区植被演替乔木、灌木和草本演替阶段土壤样品,通过Illumina HiSeq第二代高通量测序分析了土壤真菌组成及多样性。结果表明,试验共获得3 871个OTUs,分属4门17纲116科174属;潜在和中度石漠化区各演替阶段土壤真菌优势门均为担子菌门,强度石漠化区各演替阶段土壤真菌无相同优势门;土壤真菌组成及多样性在潜在石漠化区表现为乔木>草本>灌木,中度石漠化区为灌木>乔木>草本,强度石漠化区为灌木>草本>乔木,且石漠化程度对真菌组成及多样性的影响大于植被演替的影响;土壤理化性质随石漠化程度及演替阶段发生变化,且显著影响真菌多样性指数,以碱解氮为主导因子显著影响土壤真菌群落。  相似文献   

13.
Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33 % of samples. The most frequently observed fungus (66 %) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.  相似文献   

14.
We studied fungal succession in decaying wood by compiling time-series data of fruit body observations. We tested the hypothesis that the presence of a primary species affects the probability of a succeeding species occurring later on the same log. Significant associations were detected for 15 species pairs; these were consistent with earlier findings on co-occurrence patterns in single time surveys. We used enrichment analysis to test if species with particular life-history attributes were more often associated with the occurrence of a succeeding species, or vice versa. White rot fungi and fungi abundant as mycelia were more often associated with the occurrence of succeeding species, compared to brown rot fungi and species with low mycelial abundance. Our results indicate that certain primary species cause priority effects and non-random co-occurrence patterns in the field. These successional patterns are likely to be connected both with substrate modification and species interactions.  相似文献   

15.
《Fungal biology》2021,125(10):785-795
Fungi play key roles in forest ecosystems and help to shape the forest’s diverse functions. However, little is known about the diversity of phyllospheric fungi or their possible relationships with fungal communities residing in different micro-environments of Pinus massoniana forests. We investigated seven different sample types: mature needles (NM), dead needles (ND), needles falling as litter (L), fermenting needles (F), humus (H), top soil (0–20 cm) (TS), and secondary soil (20–40 cm) (SS). These seven fungal communities were examined and compared with ITS amplicons using a high-throughput sequencing technique. A total of 1213 fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level. Distinct fungal communities were associated with different sample types. A greater number of OTUs were present in both NM and F samples than those shared by both NM and TS samples, indicating that phyllospheric fungi may play crucial roles in litter decomposition. Sixty OTUs (the core microbiome) were found in all sample types, and they may probably play different ecological roles in different sample types. These findings extend our knowledge of the fungal diversity of the phyllosphere and its possible interactions with fungal communities found in distinct forest micro-habitats.  相似文献   

16.
Abstract Cellulase activity and phenol content were measured in water extracts from needles collected from Abies alba Mill. forest. Variations in cellulolytic activities in senescent needles and litter were due to the diversity of fungal colonizers and to interspecific differences in activities over the course of colonization. Phenol content was transformed quantitatively and quanlitatively in presence of fungi, therefore the biochemical environment in which cellulolytic enzymes were active had been modified.  相似文献   

17.
Fungi play an important role in leaf litter decomposition due to their ability to break down the lignocellulose matrix, which other organisms are unable to digest. However, little is known regarding the factors affecting components of fungal diversity. Here, we quantified richness of internal fungi in relation to litter nutrient and phenolic concentrations, sampling season (spring or fall), and premature leaf shedding due to low precipitation and infestation of bark beetles (mainly Ips typographus and Ips duplicatus). The study was conducted in 37-year-old Norway spruce [Picea abies (L.) Karst.] stands, with three plots each in mixed forest (MF) and coniferous forest (CF) site conditions in south-central Poland. Fifty-four species of sporulating fungi were identified in 2,330 freshly fallen needles sampled during 2003-2005, including 45 species in MF and 31 in CF. The significantly higher number of species in MF was likely related to moister conditions at that site. Among isolated fungi, 22% (12 species) were identified as endophytes of Norway spruce in prior studies. During spring of 2005, we found less than half the number of isolates and fungal species at each forest site as compared to fall for the two prior years. This pattern was observed in typical soil fungi (e.g., Penicillium daleae, Penicillium purpurogenum) and endophytes/epiphytes (e.g., Aureobasidium pullulans, Alternaria alternata, Cladosporium spp., and Lophodermium piceae). Premature shedding of needles was the most likely cause of this decline because it shortened the time period for fungi to infect green needles while on the tree. For all sites and sampling periods, richness of internal fungi was strongly and positively related to the age of freshly fallen litter (assessed using needle Ca concentration as a needle age tracer) and was also negatively related to litter phenolic concentration. Richness of internal fungi in freshly fallen litter may be adversely affected by low soil moisture status, natural inhibitors slowing fungal colonization (e.g., phenolics) and biotic (e.g., insect infestation) and abiotic (e.g., drought) factors that shorten leaf life span.  相似文献   

18.
Decomposition of Picea abies needles and production of extracellular enzymes involved in decomposition of lignin, cellulose, hemicelluloses and other organic compounds were studied in fungal strains of interior needle colonizers isolated from needles in different stages of decomposition (attached to trees, and early and late decomposition stages in the litter horizon). In total, 12 strains of ascomycetes (members of Helotiales, Hypocreales, Dothideales, Diaporthales and Eurotiales) and four basidiomycetes (Polyporales, Agaricales and Russulales) were tested. Significant decomposition of needles was recorded for all fungal isolates. All isolates produced cellobiohydrolase, β-glucosidase, β-xylosidase, N-acetylglucosaminidase, α-glucosidase, phosphatase and arylsulfatase and most fungi also produced endocellulase, endoxylanase and laccase in needle litter. In addition, other hemicellulases were produced by all strains. Mn-peroxidase was only produced by two basidiomycetes. Although enzyme activities varied, fungi associated with needles on fallen trees exhibited enzyme production comparable with later litter colonizers, and there was no significant difference in enzyme production between ascomycete and basidiomycete strains.  相似文献   

19.
In boreal forests, the level of naturalness and the stage of succession explain most of the variation in forest structure within a particular forest type. Thus, these two factors should also have a major effect on species assemblages in forests, at least on species groups associated with wood. The present study is the first attempt to analyze empirically the simultaneous effects of forest succession and naturalness on wood-inhabiting fungi, a taxonomic group of special ecological importance. The study area was situated in eastern Finland, middle boreal zone. A total of 41 study plots were established in Pinus sylvestris forests representing three levels of forest naturalness: natural, seminatural and intensively managed forests. Five stages of succession were distinguished according to the age of the dominating tree layer (<10, 40, 70, 110, and >150 yr old), except in managed forests where only four stages were available. A total of 5328 records of 195 species of fungi were made. The first, open stage of succession was clearly the most species-rich period of succession in all levels of forest naturalness. In natural and seminatural forests, the first stage of succession was also very distinctive in its fungal composition, and thus of special value in protecting biodiversity in boreal forests. In the succession following the first stage, the level of naturalness had more effect on assemblages of fungi than did the stage of succession. Intensive forest management affects threatened species particularly. In conclusion, natural young stages of succession should also be included in the network of boreal forest reserves.  相似文献   

20.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号