首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The presence of types II, IX and V collagen was probed in the organ of Corti of the adult gerbil cochlea by use of immunocytochemistry at the light- and electron-microscopic levels. Type II collagen is found in the connective tissues of the osseous spiral lamina and spiral limbus. In the region of the sensory hair cells it is present in the tectorial membrane and antibodies bind to the thick unbranched radial fibers. Type IX collagen co-localizes with type II collagen in the tectorial membrane, where antibodies bind to the thick unbranched radial fibers. Type V collagen is present in the connective tissue of the spiral limbus, the osseous spiral lamina, the eighth nerve, and the tectorial membrane. In the tectorial membrane, the staining with antibodies to type V collagen is more diffuse than that seen for types II and IX collagen and antibodies to type V bind to the thin, highly branched fibers in which the thick fibers are embedded. The results indicate that collagens characteristic of cartilage are localized in the organ of Corti. Within the tectorial membrane, types II and IX collagen form heterotypic thick fibers embedded in a reticular network of type V collagen fibers. These collagens form a highly structured matrix which contributes to the rigidity of the tectorial membrane and allow it to withstand the physical stresses associated with transmission of the stimuli necessary for sensory transduction.  相似文献   

2.
Collagen fibrils from the dermis of Sepia officinalis were processed for immunoelectron microscopy to reveal reactions to antibodies against mammalian types I, III, and V, teleost type I and cephalopod type I-like collagens, by single and double immunogold localization. The fibrils were observed: (a) in suspensions of prepared fibrils, (b) in ultrathin sections of embedded fibril preparations, and (c) in ultrathin sections of dermal tissue. Some samples were subjected to acetic acid or urea dissociation. It was found that collagen fibrils from Sepia dermis are heterotypic in that they are composed of type I-like and type V collagens. Type I-like collagen epitopes were present mainly at the periphery of the fibrils; type V collagen epitopes were present throughout the fibrils. This is the first demonstration that collagen fibrils from an invertebrate are heterotypic, suggesting that heterotypy may be an intrinsic characteristic of the fibrils of fibrillar collagens, independent of evolutionary or taxonomic status.  相似文献   

3.
Osteoclastoma-derived giant cells were used to produce 11 mouse monoclonal antibodies (MAb) reactive against human osteoclasts on undecalcified sections of adult human bone. All exhibited unique reactivities across a wide range of human tissues. Three in particular demonstrated distinctive reactivities; C35 was highly selective for bone osteoclasts, C27 showed selective reactivity for osteoclasts, tissue macrophages and blood-borne monocytes, and C22 showed selective membrane staining of osteoclasts. Consequently, C22 was used to coat Dynabeads to affinity-purify viable human osteoclasts from osteoclastoma-derived cell suspensions. Immunocytochemical staining of inflammatory osteoarthritic synovium/granulation tissue demonstrated positivity in the majority of giant cells with MAb C22 and C27. In contrast, C35 reacted with only very occasional giant cells. Furthermore, multinucleated cells formed in long-term human bone marrow cultures demonstrated similar selective staining. C27 stained all giant cells and the majority of mononuclear cells. C22 detected only a small proportion of giant cells. In contrast to its staining on bone osteoclasts, C22 demonstrated granular cytoplasmic staining in cultured giant cells. C35 stained no cells at all in these cultures. These MAb can therefore distinguish between giant cells of various origins and authentic mature osteoclasts. Alternatively, they can recognize antigens expressed at different stages of osteoclast differentiation and therefore provide an excellent tool for the study of the human osteoclast lineage.  相似文献   

4.
The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both collagens are codistributed within the same fibril. Type I collagen was localized to striated fibrils throughout the corneal stroma homogeneously. Type V collagen could be localized only after pretreatment of the tissue to partially disrupt collagen fibril structure. After such pretreatments the type V collagen was found in regions where fibrils were partially dissociated and not in regions where fibril structure was intact. When pretreated tissues were double labeled with antibodies against types I and V collagen coupled to different size gold particles, the two collagens colocalized in areas where fibril structure was partially disrupted. Antibodies against type IV collagen were used as a control and were nonreactive with fibrils. These results indicate that collagen types I and V are assembled together within single fibrils in the corneal stroma such that the interaction of these collagen types within heterotypic fibrils masks the epitopes on the type V collagen molecule. One consequence of the formation of such heterotypic fibrils may be the regulation of corneal fibril diameter, a condition essential for corneal transparency.  相似文献   

5.
Two monoclonal antibodies have been produced against chick type V collagen and shown to be highly specific for separate, conformational dependent determinants within this molecule. When used for immunocytochemical tissue localization, these antibodies show that a major site for the in situ deposition of type V is within the extracellular matrices of many dense connective tissues. In these, however, it is largely in a form unavailable to the antibodies, thus requiring a specific “unmasking” treatment to obtain successful immunocytochemical staining. The specificity of these two IgG antibodies was determined by inhibition ELISA, in which only type V and no other known collagen shows inhibition. In ELISA, mixtures of the two antibodies give an additive binding reaction to the collagen, suggesting that each is against a different antigenic determinant. That both antigenic determinants are conformational dependent, being either in, or closely associated with, the collagen helix is demonstrated by the loss of antibody binding to molecules that have been thermally denatured. The temperature at which this occurs, as assayed by inhibition ELISA, is very similar to that at which the collagen helix melts, as determined by optical rotation. This gives strong additional evidence that the antibodies are directed against the collagen. The antibodies were used for indirect immunofluorescence analyses of cryostat sections of corneas and other organs from 17 to 18-day-old chick embryos. Of all tissues examined only Bowman’s membrane gave a strong staining reaction with cryostat sections of unfixed material. Staining in other areas of the cornea and in other tissues was very light or nonexistent. When, however, sections were pretreated with pepsin dissolved in dilute HAc or, surprisingly, with the dilute HAc itself dramatic new staining by the antibodies was observed in most tissues examined. The staining, which was specific for the anti-type V collagen antibodies, was largely confined to extracellular matrices of dense connective tissues. Experiments using protease inhibitors suggested that the “unmasking” did not involve proteolysis. We do not yet know the mechanism of this unmasking; however, one possibility is that the dilute acid causes swelling or conformational changes in a type-V collagen-containing supramolecular structure. Further studies should allow us to determine whether this is the case.  相似文献   

6.
Summary Purified lactate dehydrogenase (LDH) isoenzyme 1 (H or B subunits) and isoenzyme 5 (M or A subunits) were used to prepare monoclonal antibodies (MAb) suitable for immunohistochemical detection on formalin fixed paraffin-embedded tissue sections. In the initial fusions, screening of the antibodies was based on enzyme linked immunosorbent assay (ELISA) against the immunogens. None of the antibodies obtained was satisfactory. There were various problems related to specificity, crossreactivity, affinity and also the properties of the monoclonal antibody itself. Using a combined system involving more than one method for screening, two suitable monoclonal antibodies, MAb65 (to H-type LDH) and MAb25 (to M-type LDH) were selected. Both antibodies reacted specifically with corresponding LDH isoenzymes as shown in a series of tests. Their reactivity in sections of formalin fixed paraffin-embedded tissue indicated that both antibodies are suitable reagents for immunohistochemical studies.  相似文献   

7.
For immunolocalization of alpha(2-8)-linked polysialic acid, which forms part of the neural cell adhesion molecule (N-CAM), two monoclonal antibodies, MAb735 and IgMNOV, were employed. Both antibodies have previously been shown to bind the extremely low immunogenic capsular polysaccharide of group B meningococci, which also consists of alpha(2-8) polysialic acid, but not to other, even closely related forms of polysialic acid. Despite the identical polysaccharide specificity of these two MAb, we observed marked differences of the staining pattern in tissue sections. We showed that these differences in immunostaining were due to the crossreactivity of IgMNOV with polynucleotides and DNA. MAb735, however, was shown to react exclusively with alpha(2-8) polysialic acid. Moreover, the specificity of MAb735 proved to be unique among eleven other MAb directed against various bacterial polysaccharides, as it was the only one unreactive with polynucleotides. Thus, MAb735, the only IgG type mouse monoclonal antibody to polysialic acid thus far reported, can be considered a specific probe for the unambiguous detection of alpha(2-8) polysialic acid in tissue sections, and should therefore help to further elucidate the role of polysialic acid in developmental processes.  相似文献   

8.
The basement membrane antigenic specificities of antibodies to Type IV collagen were compared to naturally occurring antibodies in sera from patients with bullous pemphigoid and epidermolysis bullosa acquisita (EBA) by indirect immunofluorescence, mixed immunofluorescence and immunoabsorption. Results suggested that the three sera reacted with three different basement membrane antigens. In addition, absorption with Types I, II, III, or IV collagen failed to reduce the basement membrane reactivities of bullous pemphigoid or EBA sera. The antibodies to the basement membrane components should be useful in studying skin and mucous membrane diseases including periodontal diseases.  相似文献   

9.
When mouse tissues are probed with murine monoclonal antibodies (MAb) by indirect immunohistochemistry, the secondary antibody detects tissue-bound MAb and irrelevant, endogenous mouse immunoglobulins. The latter are a source of confounding background, especially in diseased tissues. To circumvent this problem, we generated complexes of primary MAb and biotinylated secondary antibodies in vitro for use as antigen-specific probes. After blocking free binding sites in the complexed secondary antibodies with normal mouse serum, the complexes were applied to mouse tissue sections and tissue-bound complexes were visualized with an avidin-biotin detection system. Complexes formed with 12 different rat or mouse MAb were used to probe sections of normal mice, tumor-bearing transgenic mice, and mice with tumor xenografts. The staining patterns produced by these probes reflected the specificity of the MAb in the complexes, and the labeling of irrelevant, endogenous mouse immunoglobulins was reduced substantially. This novel, indirect immunohistochemical method can be exploited to study normal and diseased mouse tissues using a variety of murine MAb.  相似文献   

10.
Four high-affinity monoclonal antibodies (MAb) which react specifically with the low molecular weight (LMW) fragment of bovine type IX collagen (BIX) have been produced in mice. On the basis of the ability of these MAb to cross-react with type IX collagen purified from human, rat, and chick cartilage and to inhibit one another in a competitive inhibition assay, we conclude that the MAb D1-9, B3-1, and B2-7 recognize unique epitopes, whereas MAb B4-5 recognizes the same epitope as B3-1. None of the MAb reacted with bovine type I, II, and XI collagen. MAb D1-9 and B3-1 were tested for their ability to bind to tissue antigen, using an immunohistochemical assay system. Positive immunoperoxidase reactions were observed in the perichondrocytic regions of human and rat costochondral cartilage. Positive responses were also detected in rat auricular cartilage, as well as in tissue obtained from the middle and inner ears of rats and mice. This report demonstrates the relative ease of producing MAb to heterologous type IX collagen and the utility of these MAb for localizing type IX collagen in cartilage and cartilage-like tissues.  相似文献   

11.
12.
We evaluated the distribution of Type III collagen, Type VI collagen, and fibrillin in human bone, using monoclonal antibodies (MAb) of proven specificity. All three molecules are present in developing and remodeling bone. Type III collagen is present in discrete fiber bundles throughout the bone cortex but is concentrated at the Haversian canal surface and in the fibers at the bone-periosteal interface. The collagen fibrils in these bundles are of uniform diameter. Type III-containing collagen fibers are detected at all ages examined, from 30 fetal weeks to 80 years. Type VI collagen is present in fetal bone in discrete fibrils separate from Type III collagen, and becomes restricted to the margins of bone cells and the bone surface by 7 years. The distribution of fibrillin resembles that of Type III collagen in the fetus, but at 7 years is absent from the interior of the cortex except for the canaliculi and cement lines, and remains concentrated in discrete fibers at the bone surface.  相似文献   

13.
Structural components of the organic bone matrix were located by immunohistochemical techniques in fresh-frozen sections of normal and dysplastic bone. Fine and coarse birefringent fibers were identified as separate and distinctive features in the extracellular matrix by antibodies raised against human collagen Type III. The glycoprotein tenascin was located on a proportion of the fibers in a characteristic beaded pattern, which was absent in dysplastic bone. The fibers originated in the periosteum or in the fibrous stroma of the marrow cavity and were oriented with regard to both the spatial and the lamellar organization of the bone. The disposition and composition of the fibers suggests that they form a preliminary framework on which intramembranous bone modeling proceeds, and that the specific location of tenascin on the fibers in normal developing membrane bone may be important in determining the alignment of the bone tissue. Epitopes recognized by the collagen Type I and fibronectin antibodies were demonstrated throughout the mineralized matrix, but their incorporation into the collagen "Type III" fibers was evident only outside the mineralized matrix.  相似文献   

14.
Cartilage is categorized into three general subgroups, hyaline, elastic, and fibrocartilage, based primarily on morphologic criteria and secondarily on collagen (Types I and II) and elastin content. To more precisely define the different cartilage subtypes, rabbit cartilage isolated from joint, nose, auricle, epiglottis, and meniscus was characterized by immunohistochemical (IHC) localization of elastin and of collagen Types I, II, V, VI, and X, by biochemical analysis of total glycosaminoglycan (GAG) content, and by biomechanical indentation assay. Toluidine blue staining and safranin-O staining were used for morphological assessment of the cartilage subtypes. IHC staining of the cartilage samples showed a characteristic pattern of staining for the collagen antibodies that varied in both location and intensity. Auricular cartilage is discriminated from other subtypes by interterritorial elastin staining and no staining for Type VI collagen. Epiglottal cartilage is characterized by positive elastin staining and intense staining for Type VI collagen. The unique pattern for nasal cartilage is intense staining for Type V collagen and collagen X, whereas articular cartilage is negative for elastin (interterritorially) and only weakly positive for collagen Types V and VI. Meniscal cartilage shows the greatest intensity of staining for Type I collagen, weak staining for collagens V and VI, and no staining with antibody to collagen Type X. Matching cartilage samples were categorized by total GAG content, which showed increasing total GAG content from elastic cartilage (auricle, epiglottis) to fibrocartilage (meniscus) to hyaline cartilage (nose, knee joint). Analysis of aggregate modulus showed nasal and auricular cartilage to have the greatest stiffness, epiglottal and meniscal tissue the lowest, and articular cartilage intermediate. This study illustrates the differences and identifies unique characteristics of the different cartilage subtypes in rabbits. The results provide a baseline of data for generating and evaluating engineered repair cartilage tissue synthesized in vitro or for post-implantation analysis.  相似文献   

15.
Sections of integument from gastropod, bivalve and cephalopod species were studied immunohistochemically to determine reactivity to antibody against the type I-like collagen from Sepia cartilage and antibodies against components of the extracellular matrix (ECM) of vertebrate connective tissue: type I, III, IV, V, and VI collagens, laminin, nidogen and heparan sulphate. All samples exhibited similar reactivities to the antibodies, although differences in the intensity and localization of the immunostaining were found that were clearly correlated with between-species differences in integumental ultrastructure. These findings indicate that the composition of the integumental ECM is similar in the three classes of molluscs examined and that several types of collagen are present. However molluscan subepidermal connective tissue differs from the ECM of vertebrate dermis: molluscan integumental ECM contains collagens similar to type I, V and VI collagens but has no type III-similar collagen. Furthermore molecules similar to the type IV collagen, laminin, nidogen and heparan sulphate of vertebrates were present ubiquitously in molluscan basement membrane, confirming the statement that the structure and composition of basement membrane have remained constant throughout the evolution of all animal phyla.  相似文献   

16.
Unregulated activities of the matrix metalloproteinase (MMP) family have been implicated in primary and metastatic tumor growth, angiogenesis, and pathological degradation of extracellular matrix components, such as collagen and laminin. However, clinical trials with small molecule MMP inhibitors have been largely unsuccessful, with a lack of selectivity considered particularly problematic. Enhanced selectivity could be achieved by taking advantage of differences in substrate secondary binding sites (exosites) within the MMP family. In this study, triple-helical substrates and triple-helical transition state analog inhibitors have been utilized to dissect the roles of potential exosites in MMP-9 collagenolytic behavior. Substrate and inhibitor sequences were based on either the alpha1(V)436-450 collagen region, which is hydrolyzed at the Gly (downward arrow) Val bond selectively by MMP-2 and MMP-9, or the Gly (downward arrow) Leu cleavage site within the consensus interstitial collagen sequence alpha1(I-III)769-783, which is hydrolyzed by MMP-1, MMP-2, MMP-8, MMP-9, MMP-13, and MT1-MMP. Exosites within the MMP-9 fibronectin II inserts were found to be critical for interactions with type V collagen model substrates and inhibitors and to participate in interactions with an interstitial (types I-III) collagen model inhibitor. A triple-helical peptide incorporating a fibronectin II insert-binding sequence was constructed and found to selectively inhibit MMP-9 type V collagen-based activities compared with interstitial collagen-based activities. This represents the first example of differential inhibition of collagenolytic activities and was achieved via an exosite-binding triple-helical peptide.  相似文献   

17.
Summary This paper describes two new monoclonal antibodies reactive with human specific type IV collagen epitopes in frozen as well as routinely fixed and processed tissue sections. The antibodies (1042 and 1043) were raised against human placental type IV collagen and were shown by immunoblotting and ELISA tests to react exclusively with type IV collagen determinants. Extensive immunohistochemical survey studies on panels of tissues from various species, using unfixed cryosat sections, demonstrated that antibody 1042 reacted only with human type IV collagen whereas antibody 1043 in addition reacted with rabbit type IV collagen. All tissues showed homogeneous staining of the basement membrane, indicating that the detected epitopes did not show organ-specific distribution.Tissue processing protocols for using these monoclonal antibodies on routinely processed paraffin embedded tissues were developed. It was found that whereas polyclonal antitype IV collagen antisera required pepsin digestion, our monoclonal antibodies required pronase or papain digestion to restore type IV collagen immunoreactivity in paraffin sections.It is concluded that these monoclonal anti-type IV collagen antibodies detect species specific epitopes which can be detected in routinely processed paraffin embedded tissues after appropriate enzyme pretreatment.  相似文献   

18.
Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis. We further report in vitro experiments clarifying both the effect of myofibroblast differentiation on this expression and the effect of extracellular elastin on myofibroblast differentiation.Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at zero to five weeks after fibrosis induction. Collagen synthesized during the week prior to sacrifice was labeled with deuterium. After sacrifice, lung tissue was collected for determination of new collagen formation, microarray analysis, and histology. Human lung fibroblasts were grown on tissue culture plastic or BioFlex culture plates coated with type I collagen or elastin, and stimulated to undergo myofibroblast differentiation by 0–10 ng/ml transforming growth factor (TGF)β1. mRNA expression was analyzed by quantitative real-time PCR.New collagen formation during bleomycin-induced fibrosis was highly correlated to gene expression of elastin, type V collagen and tenascin C. At the protein level, elastin, type V collagen and tenascin C were highly expressed in fibrotic areas as seen in histological sections of the lung. Type V collagen and tenascin C were transiently increased. Human lung fibroblasts stimulated with TGFβ1 strongly increased gene expression of elastin, type V collagen and tenascin C. The extracellular presence of elastin increased gene expression of the myofibroblastic markers α smooth muscle actin and type I collagen.The extracellular matrix composition changes dramatically during the development of lung fibrosis. The increased levels of elastin, type V collagen and tenascin C are probably the result of increased expression by fibroblastic cells; reversely, elastin influences myofibroblast differentiation. This suggests a reciprocal interaction between fibroblasts and the extracellular matrix composition that could enhance the development of lung fibrosis.  相似文献   

19.
This paper describes two new monoclonal antibodies reactive with human specific type IV collagen epitopes in frozen as well as routinely fixed and processed tissue sections. The antibodies (1042 and 1043) were raised against human placental type IV collagen and were shown by immunoblotting and ELISA tests to react exclusively with type IV collagen determinants. Extensive immunohistochemical survey studies on panels of tissues from various species, using unfixed cryostat sections, demonstrated that antibody 1042 reacted only with human type IV collagen whereas antibody 1043 in addition reacted with rabbit type IV collagen. All tissues showed homogeneous staining of the basement membrane, indicating that the detected epitopes did not show organ-specific distribution. Tissue processing protocols for using these monoclonal antibodies on routinely processed paraffin embedded tissues were developed. It was found that whereas polyclonal anti-type IV collage antisera required pepsin digestion, our monoclonal antibodies required pronase or papain digestion to restore type IV collagen immunoreactivity in paraffin sections. It is concluded that these monoclonal anti-type IV collagen antibodies detect species specific epitopes which can be detected in routinely processed paraffin embedded tissues after appropriate enzyme pretreatment.  相似文献   

20.
Isolation of types I and V collagens from carp muscle   总被引:3,自引:0,他引:3  
1. The major constituent of carp intramuscular connective tissue was found to be Type I collagen. 2. A collagen homologous to Type V collagen of higher vertebrate was also isolated from carp muscle. 3. Relative portion of Type V collagen was higher in carp muscle than in mammalian muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号