首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigated polymers, poly(sebacic acid-co-ricinoleic acid) containing > or =70% ricinoleic acid, may be injected via a 22 gauge needle and become gel upon contact with aqueous medium, both in vitro and in vivo. Various properties of the polymers including viscosity, thermal analysis, and in vivo behavior, before and after exposure to aqueous medium, were determined. These polymers were observed using scanning electron microscopy (SEM) at dry and wet states. It was found that the viscosity and melting temperature of P(SA:RA) increased after exposure to buffer. The viscosity at 37 degrees C of P(SA:RA)3:7 had the highest increase: from 4200 cP before to 8940 cP after exposure to buffer; in the case of P(SA:RA)25:75 before exposure to buffer the viscosity was 1150 cP while after it raised to 3200 cP. The viscosity of P(SA:RA)2:8 also increased from 400 cP before exposure to buffer to 1000 cP after. On the other hand polymer without sebacic acid, (poly(ricinoleic acid)), did not show gelation properties. Thermal analysis also showed an increase in the melting point of the polymers exposed to the aqueous medium during the first 24 h of incubation. Images obtained by SEM showed formation of a three-dimensional network in polymers exposed to buffers. When injected into animals, P(SA:RA) forms a solid implant in the injection site already at 8 h postinjection.  相似文献   

2.
A systematic study on the synthesis, characterization, and polymerization of ricinoleic acid (RA) lactone is reported. Ricinoleic acid lactones were synthesized by refluxing pure ricinoleic acid in chloroform (10 mg/mL) with dicyclohexylcarbodimide and (dimethylamino)pyridine as catalyst. Purification of RA lactones was performed by silica gel chromatography. The reaction resulted in a 75% yield of ricinoleic acid lactones. IR and NMR analysis confirmed the formation of cyclic compounds. Polymerization of the ricinoleic acid lactones with catalysts commonly used for ring-opening polymerization of lactones, under specific reaction conditions, resulted in oligomers. Copolymerization with lactide (LA) by ring-opening polymerization, using Sn(Oct) as catalyst, yielded copolyesters with molecular weights (M(w)) in the range of 5000-16000 and melting temperatures of 100-130 degrees C for copolymers containing 10-50% w/w ricinoleic acid residues. Degradation studies of the copolymers were performed in 0.1 M phosphate buffer solution, pH 7.4, at 37 degrees C. P(LA-RA)s with up to 20% w/w RA slowly degraded and released only approximately 7% of its lactic acid content after 60 days of study, while pure PLA under similar conditions released more than 20% of its lactic acid content. On the other hand, copolyesters containing more then 20% w/w RA degraded and released lactic acid faster than pure PLA due to the low crystallinity of the copolymers.  相似文献   

3.
A systematic study on the synthesis, characterization, degradation, and drug release of d-, l-, and dl-poly(lactic acid) (PLA)-terminated poly(sebacic acid) (PSA) and their stereocomplexes is reported. PLA-terminated sebacic acid polymers were synthesized by melt condensation of the acetate anhydride derivatives of PLA oligomers and sebacic anhydride oligomers to yield ABA triblock copolymers of molecular weights between 3000 and 9000 that melt at temperatures between 35 and 80 degrees C. Pairs of the corresponding enantiomeric ABA copolymers composed of l-PLA-PSA-l-PLA and d-PLA-PSA-d-PLA were solvent mixed to form stereocomplexes. The formed stereocomplexes exhibited higher crystalline melting temperature than the enantiomeric polymers, which indicate stereocomplex formulation. The PLA terminals had a significant effect on the polymer degradation and drug release rate. PSA with up to 20% w/w of PLA terminals degraded and released the incorporated drug for more than 3 weeks as compared with 10 days for PSA homopolymer.  相似文献   

4.
A new α-amylase from Rhizomucor sp. (RA) was studied in detail due to its very efficient hydrolysis of raw starch granules at low temperature (32 °C). RA contains a starch binding domain (SBD) connected to the core amylase catalytic domain by a O-glycosylated linker. The mode of degradation of native maize starch granules and, in particular, the changes in the starch structure during the hydrolysis, was monitored for hydrolysis of raw starch at concentrations varying between 0.1 and 31%. RA was compared to porcine pancreatic α-amylase (PPA), which has been widely studied either on resistant starch or as a model enzyme in solid starch hydrolysis studies. RA is particularly efficient on native maize starch and release glucose only. The hydrolysis rate reaches 75% for a 31% starch solution and is complete at 0.1% starch concentration. The final hydrolysis rate was dependent on both starch concentration and enzyme amount applied. RA is also very efficient in hydrolyzing the crystalline domains in the maize starch granule. The major A-type crystalline structure is more rapidly degraded than amorphous domains in the first stages of hydrolysis. This is in agreement with the observed preferential hydrolysis of amylopectin, the starch constituent that forms the backbone of the crystalline part of the granule. Amylose-lipid complexes present in most cereal starches are degraded in a second stage, yielding amylose fragments that then reassociate into B-type crystalline structures, forming the final resistant fraction.  相似文献   

5.
The possibility to tune the hydrolytic degradation rate of polylactide by plasticizer architecture and hydrophilicity without introduction of new degradation products was investigated by subjecting polylactide with cyclic oligolactide and linear oligolactic acid additives to hydrolytic degradation at 37 and 60 °C for up to 39 weeks. The more hydrophilic oligolactic acid plasticizer led to larger water uptake and rapid migration of plasticizer from the films into the aging water. This resulted in a porous material more susceptible to further hydrolysis. During hydrolysis at 37 °C the mass loss was generally 10-20% higher for the material containing linear oligolactic acid plasticizers. The hydrolysis accelerating effect of the linear oligolactic acid is probably counteracted by the higher degree of crystallinity in the films containing oligolactic acid additives. The degradation process was monitored by measurements of mass loss, water uptake, molar mass changes, material composition changes, surface changes, and thermal properties. The water-soluble degradation products were analyzed by following pH changes and identified by electrospray ionization-mass spectrometry (ESI-MS). The time frame for formation of water-soluble products was influenced by the architecture and hydrophilicity of the plasticizer. Furthermore, the advantage with oligolactide and oligolactic acid plasticizers was clearly demonstrated as they do not introduce any new migrants into the degradation product patterns.  相似文献   

6.
Peroxisomes from castor bean endosperm and mung bean hypocotyl completely degrade ricinoleic acid (12-D-hydroxy-9-cis-octadecenoic acid) to acetyl-CoA. Concomitant NADH formation occurred with a stoichiometry of 9 nmol NADH formed per 1 nmol ricinoleate degraded. At the C8-intermediate level, where the hydroxy group of ricinoleic acid forms a barrier to β-oxidation, 2-hydroxyoctanoate and 2-oxooctanoate were detected as intermediates. 2-Hydroxyoctanoate was oxidized to 2-oxooctanoate with H2O2 producing a reaction exhibiting 1:1 stoichiometry of the products. The peroxisomes appeared to oxidize both isomers of racemic 2-hydroxyoctanoate. 2-Oxooctanoate was metabolized to heptanoyl-CoA (propionyl-CoA and acetyl-CoA) in a NAD-dependent, but ATP-independent, reaction. Heptanoate was not detected as an intermediate. Imidazole, an inhibitor of α-oxidation, did not effect the degradation of ricinoleate or 2-oxooctanoate. Arsenite, an inhibitor of oxidative decarboxylation, inhibited the metabolism of ricinoleate at the C8-intermediate level, according to the accumulation of 2-oxooctanoate and the stoichiometry of concomitant NADH formation. Arsenite completely inhibited the metabolism of 2-oxooctanoate. It is concluded that the barrier caused by the hydroxy group of ricinoleic acid and prevention of β-oxidation at the C8-intermediate level, is circumvented by an α-hydroxy acid oxidase reaction followed by an oxidative decarboxylation allowing return to the β-oxidation track.  相似文献   

7.
The efficiency of two lypolytic enzymes (fungal cutinase, yeast esterase) in the degradation of dipropyl phthalate (DPrP) was investigated. The DPrP-degradation rate of fungal cutinase was surprisingly high, i.e., almost 70% of the initial DPrP (500 mg/l) was decomposed within 2.5 h and nearly 50% of the degraded DPrP disappeared within the initial 15 min. With the yeast esterase, despite the same concentration, more than 90% of the DPrP remained even after 3 days of treatment. During the enzymatic degradation of DPrP, several DPrP-derived compounds were detected and time-course changes in composition were also monitored. The final chemical composition after 3 days was significantly dependent on the enzyme used. During degradation with fungal cutinase, most DPrP was converted into 1,3-isobenzofurandione (IBF) by diester hydrolysis. However, in the degradation by yeast esterase, propyl methyl phthalate (PrMP) was produced in abundance in addition to IBF. The toxic effects of the final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including PrMP) from yeast esterase severely caused oxidative stress and damage to protein synthesis in bacterial cells, while in the fungal cutinase processes, DPrP was significantly degraded to non-toxic IBF after the extended period (3 days).  相似文献   

8.
High molar mass random poly(butylene succinate-co-butylene sebacate), P(BS-co-BSe), and poly(butylene succinate-co-butylene adipate), P(BS-co-BA), with different composition, were synthesized and subjected to enzymatic hydrolysis by Lipase from Mucor miehei or from Rhizopus arrhizus. The enzymatic hydrolysis of P(BS-co-BSe)s and P(BS-co-BA)s films produced a mixture of water-soluble monomers and co-oligomers that were separated and identified by on-line high performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS). Optimization of the HPLC analysis allowed the separation of isobar co-oligomers, differing only for the co-monomers sequence. Oligomers with the same monomer composition and molar mass but different sequence were identified by HPLC/ESI-MS-MS on-line analysis. The results obtained show a preferential hydrolytic cleavage induced by the lipases used. In particular, these enzymes prefer cleaving sebacic ester bonds in P(BS-co-BSe) copolymers, whereas succinic ester bonds appear to be hydrolyzed faster than adipic ester bonds in P(BS-co-BA) copolyesters. 1H NMR analysis further substantiates these findings. The primary products generated by lipase hydrolysis of polyester films underwent further degradation at longer reaction times. The HPLC/ESI-MS analysis of these mixtures at various times provided the first evidence that lipase catalysis is active also in water solution, a hydrophobic effect induced by the aliphatic units of these polyesters.  相似文献   

9.
Rat isolated intestine incubated in Krebs solution converted exogenous [14C]-arachidonic acid into products that chromatographed with prostaglandins, leukotriene B4 and 5-hydroxy-eicosatetraenoic acid. Accumulation of these products was increased by the laxative ricinoleic acid (0.34 mM) or the calcium ionophore A23187 (7.6 microM). In the presence of the calcium antagonists TMB-8 (0.43 microM) or verapamil (0.2 microM) the mean effects of ricinoleic acid or the calcium ionophore were smaller. Stimulation of arachidonic acid metabolism by ricinoleic acid therefore seems likely to involve a calcium-dependent mechanism.  相似文献   

10.
The products of the hydrolytic degradation of 6-beta-(hexahydro-IH-azepenyl-1)methylenamino) penicillanic acid, 6-beta-(N,N-dimethylformamidino-N1)-penicillanic acid and 6-beta-(morpholinyl-1)methylenamino penicillanic acid were identified with the method of thin-layer chromatography and paper electrophoresis in neutral, acid and alkaline solutions and in the presence of penicillinase. The data of the study showed that acid hydrolysis of the amidine analogues of penicillins resulted in cleavage of the beta-lactame cycle and formation of the respective penicillanic acids. In the alkaline medium the secondary amine (hexamethylenimine, dimethylamine, morpholine) was cleaved from the antibiotic side chain and the resulting N-formyl-6-aminopenicillanic acid was further cleaved up to peniciec acid. The beta-lactame cycle of the antibiotics was cleaved under the effect of penicillinase and the resulting penicilloinic acids degraded into peniciec acid, N-formylpeniciec acid and secondary amines. In the nutral solution the antibiotics were transformed into N-formyl-6-aminopenicillanic acid and penicilloinic acids at the first stage of the hydrolysis followed by their further degradation with formation of N-formylpeniciec acid, peniciec acid and secondary amines.  相似文献   

11.
The effect of ethionine, an amino acid analog of methionine, has been studied in Saccharomyces cerevisiae in relation to cell growth, oxygen consumption, in vitro protein synthesis of mitochondrial translation products (MTPs) and the degradation of those mitoribosomally made proteins by an ATP-dependent process present within the organelle. Ethionine was found to increase the generation time of those cells already committed to cell division and to abolish the initiation of new cell cycles. Oxygen consumption of cultures grown in the presence of the analog was drastically reduced. Ethionine was also found to impair the incorporation of methionine and leucine into mitochondrial translation products, however the synthesis of proteins was not totally blocked and, apparently, mitochondria utilized ethionine as a precursor amino acid. MTPs synthesized by isolated mitochondria in the presence of ethionine were rapidly degraded inside the organelle at a faster rate compared with the normal proteins synthesized under identical conditions in the mitochondria. It is also shown that these in vitro synthesized proteins are degraded by an ATP-stimulated proteolytic system, as has been previously established.  相似文献   

12.
The interfacial properties of monomolecular films of stearic acid (SA) oleic acid (OA), linoleic acid (LA), ricinoleic acid (RA), 13(S)-hydroperoxyoctadeca-9Z,11E-dienoic acid (13-HPODE) and 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid (13-HODE) were studied by recording the changes occurring in response to monomolecular film compression in their surface pressure and surface potential at the argon/water interface. The oxidized free fatty acids are more expanded than the parent non-oxidized free fatty acids, reflecting a higher hydrophilic-lipophilic balance. The lift-off values of the molecular area of 13-HODE, 13-HPODE and RA were 68, 74 and 106 A2 molecule(-1), respectively, as compared to 47 and 40 A2 molecule(-1) in the case of LA and OA, respectively. Variations in the molecular orientation of free fatty acids can result in large changes in the dipole moment which are not accompanied by appreciable changes in the surface pressure. In the case of the oxidized free fatty acids, the spontaneous desorption into the aqueous phase was found to increase at increasing surface pressures. The desorption rates of OA and LA increased dramatically in the presence of beta-cyclodextrin (beta-CD); whereas the presence of beta-CD only slightly increased the desorption rates of the oxidized free fatty acids.  相似文献   

13.
The efficiency of two lypolytic enzymes (fungal cutinase, yeast esterase) in the degradation of di-(2-ethylhexyl)-phthalate (DEHP) was investigated. The DEHP-degradation rate of fungal cutinase was surprisingly high, i.e. almost 70% of the initial DEHP (500 mg/l) was decomposed within 2.5 h and nearly 50% of the degraded DEHP disappeared within the initial 15 min. With the yeast esterase, despite the same concentration, more than 85% of the DEHP remained even after 3 days of treatment. During the enzymatic degradation of DEHP, several DEHP-derived compounds were detected and time-course changes in composition were also monitored. During degradation with fungal cutinase, most DEHP was converted into 1,3-isobenzofurandione (IBF) by diester hydrolysis. In the degradation by yeast esterase, two organic chemicals were produced from DEHP: IBF and an unidentified compound (X). The final chemical composition after 3 days was significantly dependent on the enzyme used. Fungal cutinase produced IBF as a major degradation compound. However, in the DEHP degradation by yeast esterase, compound X was produced in abundance in addition to IBF. The toxic effects of the final degradation products were investigated, using various recombinant bioluminescent bacteria and, as a result, the degradation products from yeast esterase were shown to contain a toxic hazard, causing oxidative stress and damage to protein synthesis.  相似文献   

14.
The effect of acid hydrolysis of English oak (Quercus robur. L) wood on its aroma-forming complex was studied. The contents of methanol, acetic and crotonic acids, and furfural increased considerably in the samples treated with hydrochloric acid. In the composition of minor compounds, aromatic hydrocarbons were synthesized de novo, whereas the contents of volatile phenols, such as vanillin, lilac aldehyde, and coniferaldehyde decreased; relative content of guaiacol and syringol elevated; and acetovanillon and propiovanilIon were formed as well as products of degradation of hexoses-levoglucosenone, 1,4:3,6-dianhydroglucose, maltol, and 1,6-dianhydroglucopyran.  相似文献   

15.
Rat isolated intestine incubated in Krebs solution converted exogenous [14C]-arachidonic acid into products that chromatographed with prostaglandins, leukotriene B4 and 5-hydroxy-eicosatetraenoic acid. Accumulation of these products was increased by the laxative ricinoleic acid (0.34 mM) or the calcium ionophore A23187 (7.6μM). In the presence of the calcium antagonists TMB-8 (0.43μM). or verapamil (0.2μM) the mean effects of ricinoleic acid or the calcium ionophore were smaller. Stimulation of arachidonic acid metabolism by ricinoleic acid therefore seems likely to involve a calcium-dependent mechanism.  相似文献   

16.
The degradation of bis(2-ethylhexyl) phthalate (DEHP) and its intermediary hydrolysis products 2-ethylhexanol (2-EH) and mono(2-ethylhexyl) phthalate (MEHP) was investigated in a methanogenic phthalic acid ester-degrading enrichment culture at 37°C. 2-Ethylhexanoic acid (2-EHA), a plausible degradation product of 2-EH, was also studied. The culture readily degraded 2-EH via 2-EHA to methane which was formed in stoichiometric amounts assuming complete degradation of 2-EH to methane and carbon dioxide. MEHP was degraded to stoichiometric amounts of methane with phthalic acid as a transient intermediate. DEHP remained unaffected throughout the experimental period (330 days).Abbreviations 2-EH 2-ethylhexyl alcohol - 2-EHA 2-ethylhexanoic acid - BBP butylbenzyl phthalate - Be-CoA benzoyl Coenzyme A - CoA Coenzyme A - DEHP bis(2-ethylhexyl) phthalate - MEHP mono(2-ethylhexyl) phthalate - MSW municipal solid waste - PA phthalic acid - PAE phthalic acid ester - TMS trimethylsilyl derivative  相似文献   

17.
Jarvis AP  Schaaf O  Oldham NJ 《Planta》2000,212(1):119-126
Stable-isotope-labelled (2H6,18O) 3-hydroxy-3-phenylpropanoic acid, a putative intermediate in the biosynthesis of benzoic acid (BA) and salicylic acid (SA) from cinnamic acid, has been synthesized and administered to cucumber (Cucumis sativus L.) and Nicotiana attenuata (Torrey). Analysis of the products by gas chromatography-mass spectrometry revealed incorporation of labelling into BA and SA, but not into benzaldehyde. In a separate experiment, 3-hydroxy- 3-phenylpropanoic acid was found to be a metabolite of phenylalanine, itself the primary metabolic precursor of BA and SA. These data suggest that cinnamic acid chain shortening is probably achieved by β-oxidation, and that the proposed “non-oxidative” pathway of side-chain degradation does not function in the biosynthesis of BA and SA, in cucumber and N. attenuata. Received: 10 February 2000 / Accepted: 18 April 2000  相似文献   

18.
Biodegradation of copoly(L-aspartic acid/L-glutamic acid) in vitro.   总被引:1,自引:0,他引:1  
T Hayashi  M Iwatsuki 《Biopolymers》1990,29(3):549-557
The preparation of copolypeptides consisting of L-aspartic acid and L-glutamic acid was performed to determine the effects of copolymer composition and sequential distributions on the rate of degradation by papain in a PECF (pseudoextracellular fluid) at pH 4.75 and 7.40, at 37.0 degrees C, to simulate in vivo polymer degradation. Random copolymers consisting of beta-benzyl L-aspartate and gamma-benzyl L-glutamate were synthesized by the N-carboxyanhydride method. Water-soluble copolymers were obtained by successive reactions of side chains by anhydrous HBr treatment. All the samples were found to be degraded by random chain scission with papain. Further, the degradation data for the samples followed the Michaelis-Menten rate law, being the first order in papain concentration. The nature of side chains are important to the rate of degradation by papain and it was controlled by the comonomer composition as well as the sequential distribution of comonomers in the copolymer chains.  相似文献   

19.
Ahn JY  Kim YH  Min J  Lee J 《Current microbiology》2006,52(5):340-344
The efficiency of two lipolytic enzymes (fungal cutinase and yeast esterase) in the degradation of dipentyl phthalate (DPeP) was investigated. The DPeP degradation rate of fungal cutinase was surprisingly high, i.e., almost 60% of the initial DPeP (500 mg/L) was decomposed within 2.5 hours, and nearly 40% of the degraded DPeP disappeared within the initial 15 minutes. With the yeast esterase, despite the same concentration, >87% of the DPeP remained even after 3 days of treatment. The final chemical composition after 3 days was significantly dependent on the enzyme used. During degradation with cutinase, most DPeP was converted into 1,3-isobenzofurandione (IBF) by diester hydrolysis. However, in the degradation by esterase, pentyl methyl phthalate, in addition to IBF, was produced in abundance. Toxicity monitoring using various recombinant bioluminescent bacteria showed that the degradation products from yeast esterase contained a toxic hazard, causing oxidative stress and damage to protein synthesis. Ji-Young Ahn, Yang-Hoon Kim are contributed equally to this work  相似文献   

20.
The absorption characteristics of rosmarinic acid (RA) were examined by measuring permeation across Caco-2 cell monolayers using an HPLC-electrochemical detector (ECD) fitted with a coulometric detection system. RA exhibited nonsaturable transport even at 30 mM, and the permeation at 5 mM in the apical-to-basolateral direction, J(ap-->bl), was 0.13 nmol/min/mg of protein. This permeation rate is nearly the same as that of 5 mM chlorogenic acid (CLA) and gallic acid, which are paracellularly transported compounds. Almost all of the apically loaded RA was retained on the apical side, and J(ap-->bl) was inversely correlated with paracellular permeability. These results indicate that RA transport was mainly via paracelluar diffusion, and the intestinal absorption efficiency of RA was low. Furthermore, RA appeared to be unsusceptible to hydrolysis by mucosa esterase in Caco-2 cells. These results, together with our previous work (J. Agric. Food Chem., 52, 2518-2526 (2004), J. Agric. Food Chem., 52, 6418-6424 (2004)) suggest that the majority of RA is further metabolized and degraded into m-coumaric and hydroxylated phenylpropionic acids by gut microflora, which are then efficiently absorbed and distributed by the monocarboxylic acid transporter (MCT) within the body. The potential of orally administered RA in vivo will be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号