首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
d-Glucuronate is a key metabolite in the process of detoxification of xenobiotics and in a recently constructed synthetic pathway to produce d-glucaric acid, a “top value-added chemical” from biomass. A simple and specific assay of d-glucuronate would be useful for studying these processes, but existing assays are either time-consuming or nonspecific. Using uronate dehydrogenase cloned from Agrobacterium tumefaciens, we developed an assay for d-glucuronate with a detection limit of 5 μM. This method was shown to be more suitable for a system with many interfering compounds than previous methods and was also applied to assays for myo-inositol oxygenase activity.  相似文献   

2.
Recent expansion of immunocompromised population has led to significant rise in zygomycosis caused by filamentous fungus Rhizopus oryzae. Due to emergence of fungal resistance and side-effects of antifungal drugs, there is increased demand for novel drug targets. The current study elucidates molecular interactions of peptide drugs with G-6-P synthase (catalyzing the rate-limiting step of fungal cell wall biosynthetic pathway) of R.oryzae by molecular docking studies. The PDB structures of enzyme in R.oryzae are not known which were predicted using I-TASSER server and validated with PROCHECK. Peptide inhibitors, FMDP and ADGP previously used against enzyme of E.coli (PDBid: 1XFF), were used for docking studies of enzyme in R.oryzae by SchrödingerMaestro v9.1. To investigate binding between enzyme and inhibitors, Glide and Induced Fit docking were performed. IFD results of 1XFF with FMDP yielded C1, R73, W74, T76, G99 and D123 as the binding sites. C379 and Q427 appear to be vital for binding of R.oryzae enzymes to inhibitors. The comparison results of IFD scores of enzyme in R.oryzae and E.coli (PDBid: 2BPL) yield appreciable score, hinting at the probable effectiveness of inhibitors FMDP and ADGP against R.oryzae, with ADGP showing an improved enzyme affinity. Moreover, the two copies of gene G-6-P synthase due to extensive fungal gene duplication, in R. oryzae eliminating the problem of drug ineffectiveness could act as a potential antifungal drug target in R. oryzae with the application of peptide ligands.  相似文献   

3.
The d-glucuronate product of myo-inositol oxygenase (EC 1.13.99.1) is efficiently reduced by NADPH in the presence of either purified d-glucuronate reductase (EC 1.1.1.19), or reductase that is part of a protein aggregate that also contains the oxygenase. This occurs despite the fact that the maximum concentration of d-glucuronate that could be formed by the oxygenase under the conditions used for the coupled enzyme experiments is 7 μM, and 10 μM externally supplied d-glucuronate (Km = 7.6 mM) does not support any detectable NADPH oxidation under the reaction conditions. The most likely explanation for the results is that the uncyclized aldehyde form of d-glucuronate is the product of the oxygenase reaction, and that it diffuses into solution and is captured by the reductase before it cyclizes to the more stable but less reactive hemiacetal form.  相似文献   

4.
The carboxylation of the pentapeptide substrate, Phe-Leu-Glu-Glu-Ile, by a rat microsomal vitamin K-dependent carboxylase was stimulated two- to threefold at pyridoxal-5′-P concentrations between 0.5 and 1.0 mm. This stimulation was reduced at concentrations higher than 1.0 mm. The Km for the pentapeptide was lowered twofold in the presence of 1 mm pyridoxal-5′-P. The activation by pyridoxal-5′-P is specific, as 1 mm pyridoxal, pyridoxine, pyridoxine-5′-P, pyridoxamine, pyridoxamine-5′-P, or 4-pyridoxic acid did not stimulate the pentapeptide carboxylation rate. All six analogs, as well as formaldehyde and acetaldehyde, inhibited the carboxylation reaction in a concentration-dependent manner. The activation of the carboxylase by pyridoxal-5′-P appeared to be mediated by its direct binding to the enzyme via Schiff base formation. Sodium borohydride reduction of solubilized microsomes in the presence of pyridoxal-5′-P, followed by dialysis to remove unbound material, resulted in a carboxylase preparation with a specific activity twice that of the untreated control microsomes. The derivatized enzyme was not further stimulated by added pyridoxal-5′-P. This derivatized carboxylase could be obtained in the absence of pentapeptide and divalent cations. The stimulation of the carboxylase activity by divalent cations and pyridoxal-5′-P was mediated at separate site(s) on the enzyme. Studies of the NH2-terminal pyridoxalated pentapeptide with both a normal and PLP-modified enzyme, in the presence and absence of PLP, demonstrated competition of the pentapeptide PLP moiety to a PLP site on the enzyme. It was concluded that pyridoxal-5′-P forms a covalent attachment to an ?-NH2 of a lysine near the active site of the carboxylase.  相似文献   

5.
Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is known as a promising target for antimicrobial agents and antidiabetics. Several compounds of natural or synthetic origin have been identified as inhibitors of this enzyme. This set comprises highly selective l-glutamine, amino sugar phosphate or transition state intermediate cis-enolamine analogues. Relatively low antimicrobial activity of these inhibitors, poorly penetrating microbial cell membranes, has been improved using the pro-drug approach. On the other hand, a number of heterocyclic and polycyclic compounds demonstrating antimicrobial activity have been presented as putative inhibitors of the enzyme, based on the results of molecular docking to GlcN-6-P synthase matrix. The most active compounds of this group could be considered promising leads for development of novel antimicrobial drugs or antidiabetics, provided their selective toxicity is confirmed.  相似文献   

6.
Thiaminephosphate pyrophosphorylase (EC 2.5.1.3) in Escherichia coli has been purified 175-fold by conventional methods of enzyme purification. General properties of the partially purified enzyme were similar to those of the yeast enzyme except for a small molecular weight of 17,000. The E. coli enzyme was inhibited by a variety of high-energy phosphate compounds. Acetyl phosphate was the most potent inhibitor and resulted in 50% inhibition at 0.5 mm concentration. ATP and acetyl phosphate were both uncompetitive inhibitors with respect to both substrates. Low-energy phosphate compounds and pyridine nucleotides were not able to inhibit the activity. These results, together with the other results obtained, indicate that these high-energy phosphate compounds did not inhibit the enzyme activity after conversion to a common compound. The physiological significance of this type of inhibition was discussed from the point of cellular energy charge.  相似文献   

7.
Cell-free extract (crude extract) of Agrobacterium tumefaciens grown on d-glucuronate or d-glucarate converts d-glucarate and galactarate to a mixture of 2-keto-3-deoxy- and 4-deoxy-5-keto-d-glucarate. These compounds are then converted by partially purified crude extract to an intermediate tentatively identified as 2,5-diketoadipate. The same enzyme preparation further decarboxylates this intermediate to alpha-ketoglutarate semialdehyde, which is subsequently oxidized in a nicotinamide adenine dinucleotide-dependent reaction to alpha-ketoglutaric acid. Since A. tumefaciens converts d-glucuronic acid to d-glucarate, a pathway from d-glucuronate to alpha-ketoglutarate in A. tumefaciens was determined.  相似文献   

8.
UDP-Glc pyrophosphorylase (UGPase) is an essential enzyme responsible for production of UDP-Glc, which is used in hundreds of glycosylation reactions involving addition of Glc to a variety of compounds. In this study, barley UGPase was characterized with respect to effects of its substrates on activity and quaternary structure of the protein. Its Km values with Glc-1-P and UTP were 0.33 and 0.25 mM, respectively. Besides using Glc-1-P as a substrate, the enzyme had also considerable activity with Gal-1-P; however, the Km for Gal-1-P was very high (>10 mM), rendering this reaction unlikely under physiological conditions. UGPase had a relatively broad pH optimum of 6.5–8.5, regardless of the direction of reaction. The enzyme equilibrium constant was 0.4, suggesting slight preference for the Glc-1-P synthesis direction of the reaction. The quaternary structure of the enzyme, studied by Gas-phase Electrophoretic Mobility Macromolecule Analysis (GEMMA), was affected by addition of either single or both substrates in either direction of the reaction, resulting in a shift from UGPase dimers toward monomers, the active form of the enzyme. The substrate-induced changes in quaternary structure of the enzyme may have a regulatory role to assure maximal activity. Kinetics and factors affecting the oligomerization status of UGPase are discussed.  相似文献   

9.
Plasmodium falciparum alanine M1-aminopeptidase (PfA-M1) is a validated target for anti-malarial drug development. Presence of significant similarity between PfA-M1 and human M1-aminopeptidases, particularly within regions of enzyme active site leads to problem of non-specificity and off-target binding for known aminopeptidase inhibitors. Molecular docking based in silico screening approach for off-target binding has high potential but requires 3D-structure of all human M1-aminopeptidaes. Therefore, in the present study 3D structural models of seven human M1-aminopeptidases were developed. The robustness of docking parameters and quality of predicted human M1-aminopeptidases structural models was evaluated by stereochemical analysis and docking of their respective known inhibitors. The docking scores were in agreement with the inhibitory concentrations elucidated in enzyme assays of respective inhibitor enzyme combinations (r2≈0.70). Further docking analysis of fifteen potential PfA-M1 inhibitors (virtual screening identified) showed that three compounds had less docking affinity for human M1-aminopeptidases as compared to PfA-M1. These three identified potential lead compounds can be validated with enzyme assays and used as a scaffold for designing of new compounds with increased specificity towards PfA-M1.  相似文献   

10.
Anti-cancer topoisomerase I (Top1) inhibitors (camptothecin and its derivatives irinotecan and topotecan, and indenoisoquinolines) induce lethal DNA lesions by stabilizing Top1-DNA cleavage complex (Top1cc). These lesions are repaired by parallel repair pathways including the tyrosyl-DNA phosphodiesterase 1 (TDP1)-related pathway and homologous recombination. As TDP1-deficient cells in vertebrates are hypersensitive to Top1 inhibitors, small molecules inhibiting TDP1 should augment the cytotoxicity of Top1 inhibitors. We developed a cell-based high-throughput screening assay for the discovery of inhibitors for human TDP1 using a TDP1-deficient chicken DT40 cell line (TDP1−/−) complemented with human TDP1 (hTDP1). Any compounds showing a synergistic effect with the Top1 inhibitor camptothecin (CPT) in hTDP1 cells should either be a TDP1-related pathway inhibitor or an inhibitor of alternate repair pathways for Top1cc. We screened the 400,000-compound Small Molecule Library Repository (SMLR, NIH Molecular Libraries) against hTDP1 cells in the absence or presence of CPT. After confirmation in a secondary screen using both hTDP1 and TDP1−/− cells in the absence or presence of CPT, five compounds were confirmed as potential TDP1 pathway inhibitors. All five compounds showed synergistic effect with CPT in hTDP1 cells, but not in TDP1−/− cells, indicating that the compounds inhibited a TDP1-related repair pathway. Yet, in vitro gel-based assay revealed that the five compounds did not inhibit TDP1 catalytic activity directly. We tested the compounds for their ability to inhibit poly(ADP-ribose)polymerase (PARP) because PARP inhibitors are known to potentiate the cytotoxicity of CPT by inhibiting the recruitment of TDP1 to Top1cc. Accordingly, we found that the five compounds inhibit catalytic activity of PARP by ELISA and Western blotting. We identified the most potent compound (Cpd1) that offers characteristic close to veliparib, a leading clinical PARP inhibitor. Cpd1 may represent a new scaffold for the development of PARP inhibitors.  相似文献   

11.
The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of ~106 compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus- and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability of this novel strategy to the histidine biosynthesis pathway.  相似文献   

12.

Background

Mevalonate pathway is an important cellular metabolic pathway present in all higher eukaryotes and many bacteria. Four enzymes in mevalonate pathway, including MVK, PMK, MDD, and FPPS, play important regulatory roles in cholesterol biosynthesis and cell proliferation.

Methods

The following methods were used: cloning, expression and purification of enzymes in mevalonate pathway, organic syntheses of multifunctional enzyme inhibitors, measurement of their IC50 values for above four enzymes, kinetic studies of enzyme inhibitions, molecular modeling studies, cell viability tests, and fluorescence microscopy.

Results and conclusions

We report our multi-target-directed design, syntheses, and characterization of two blue fluorescent bisphosphonate derivatives compounds 15 and 16 as multifunctional enzyme inhibitors in mevalonate pathway. These two compounds had good inhibition to all these four enzymes with their IC50 values at nanomolar to micromolar range. Kinetic and molecular modeling studies showed that these two compounds could bind to the active sites of all these four enzymes. The fluorescence microscopy indicated that these two compounds could easily get into cancer cells.

General significance

Multifunctional enzyme inhibitors are generally more effective than single enzyme inhibitors, with fewer side effects. Our results showed that these multifunctional inhibitors could become lead compounds for further development for the treatment of soft-tissue tumors and hypercholesteremia.  相似文献   

13.
GlgB (α-1,4-glucan branching enzyme) is the key enzyme involved in the biosynthesis of α-glucan, which plays a significant role in the virulence and pathogenesis of Mycobacterium tuberculosis. Because α-glucans are implicated in the survival of both replicating and non-replicating bacteria, there exists an exigent need for the identification and development of novel inhibitors for targeting enzymes, such as GlgB, involved in this pathway. We have used the existing structural information of M. tuberculosis GlgB for high throughput virtual screening and molecular docking. A diverse database of 330,000 molecules was used for identifying novel and efficacious therapeutic agents for targeting GlgB. We also used three-dimensional shape as well as two-dimensional similarity matrix methods to identify diverse molecular scaffolds that inhibit M. tuberculosis GlgB activity. Virtual hits were generated after structure and ligand-based screening followed by filters based on interaction with human GlgB and in silico pharmacokinetic parameters. These hits were experimentally evaluated and resulted in the discovery of a number of structurally diverse chemical scaffolds that target M. tuberculosis GlgB. Although a number of inhibitors demonstrated in vitro enzyme inhibition, two compounds in particular showed excellent inhibition of in vivo M. tuberculosis survival and its ability to get phagocytosed. This work shows that in silico docking and three-dimensional chemical similarity could be an important therapeutic approach for developing inhibitors to specifically target the M. tuberculosis GlgB enzyme.  相似文献   

14.
Sphingolipid long-chain bases and their phosphorylated derivatives, for example, sphingosine-1-phosphate in mammals, have been implicated as signaling molecules. The possibility that Saccharomyces cerevisiae cells also use long-chain-base phosphates to regulate cellular processes has only recently begun to be examined. Here we present a simple and sensitive procedure for analyzing and quantifying long-chain-base phosphates in S. cerevisiae cells. Our data show for the first time that phytosphingosine-1-phosphate (PHS-1-P) is present at a low but detectable level in cells grown on a fermentable carbon source at 25°C, while dihydrosphingosine-1-phosphate (DHS-1-P) is only barely detectable. Shifting cells to 37°C causes transient eight- and fivefold increases in levels of PHS-1-P and DHS-1-P, respectively, which peak after about 10 min. The amounts of both compounds return to the unstressed levels by 20 min after the temperature shift. These data are consistent with PHS-1-P and DHS-1-P being signaling molecules. Cells unable to break down long-chain-base phosphates, due to deletion of DPL1 and LCB3, show a 500-fold increase in PHS-1-P and DHS-1-P levels, grow slowly, and survive a 44°C heat stress 10-fold better than parental cells. These and other data for dpl1 or lcb3 single-mutant strains suggest that DHS-1-P and/or PHS-1-P act as signals for resistance to heat stress. Our procedure should expedite experiments to determine how the synthesis and breakdown of these compounds is regulated and how the compounds mediate resistance to elevated temperature.  相似文献   

15.
At pH 6.8, pig kidney phosphofructokinase (PFK) is inhibited 90% by 1 mm hexacyanoferrate(II), in a reaction mixture containing 0.2 mm fructose 6-phosphate (F-6-P) and 1 mm ATP. Glucose 6-phosphate dehydrogenase and phosphoglucose isomerase are inhibited 70% by 5 mm hexacyanoferrate(II), at a 0.2 mm concentration of their respective substrates. Unlike all previously reported inhibitions of glycolytic enzymes by hexacyanoferrate, this inhibition seems not to involve an oxidation of enzyme, substrate, or enzyme-substrate complex. It appears to be due to reversible binding of the hexacyanoferrate at, or near, the hexose phosphate binding site of each enzyme. These inhibition studies were carried out in 50 mm 2-mercaptoethanol, and spectral studies showed that these conditions ensured that all the hexacyanoferrate was in the reduced (II) state. The inhibition of PFK was competitive with respect to the substrate F-6-P. Some reaction between hexacyanoferrate(II) and the substrate could not be definitely ruled out, but such reactions cannot be the major basis for the inhibitions observed. Increasing the magnesium concentration did not overcome the PFK inhibition. For all three enzymes, addition of a high concentration of hexose phosphate substrate to an assay mixture containing highly inhibited enzyme resulted in removal of the inhibition. The inhibition was instantaneous, and there was no increase in inhibition with time of incubation with hexacyanoferrate(II). These results may provide an approach to active-site labeling of these three enzymes at their hexose phosphate binding sites. These results should also be of interest to other workers, especially those involved in oxidative phosphorylation studies, who use ferro- and ferricyanide as research tools. The effects from such experiments may, in some cases, be due to binding of these compounds at, or near, hexose phosphate binding sites in the system.  相似文献   

16.
We show that Mycobacterium smegmatis has an enzyme catalyzing transfer of maltose from [14C]maltose 1-phosphate to glycogen. This enzyme was purified 90-fold from crude extracts and characterized. Maltose transfer required addition of an acceptor. Liver, oyster, or mycobacterial glycogens were the best acceptors, whereas amylopectin had good activity, but amylose was a poor acceptor. Maltosaccharides inhibited the transfer of maltose from [14C]maltose-1-P to glycogen because they were also acceptors of maltose, and they caused production of larger sized radioactive maltosaccharides. When maltotetraose was the acceptor, over 90% of the 14C-labeled product was maltohexaose, and no radioactivity was in maltopentaose, demonstrating that maltose was transferred intact. Stoichiometry showed that 0.89 μmol of inorganic phosphate was produced for each micromole of maltose transferred to glycogen, and 56% of the added maltose-1-P was transferred to glycogen. This enzyme has been named α1,4-glucan:maltose-1-P maltosyltransferase (GMPMT). Transfer of maltose to glycogen was inhibited by micromolar amounts of inorganic phosphate or arsenate but was only slightly inhibited by millimolar concentrations of glucose-1-P, glucose-6-P, or inorganic pyrophosphate. GMPMT was compared with glycogen phosphorylase (GP). GMPMT catalyzed transfer of [14C]maltose-1-P, but not [14C]glucose-1-P, to glycogen, whereas GP transferred radioactivity from glucose-1-P but not maltose-1-P. GMPMT and GP were both inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol, but only GP was inhibited by isofagomine. Because mycobacteria that contain trehalose synthase accumulate large amounts of glycogen when grown in high concentrations of trehalose, we propose that trehalose synthase, maltokinase, and GMPMT represent a new pathway of glycogen synthesis using trehalose as the source of glucose.  相似文献   

17.
Purified trehalose-6-phosphate synthase (TPS) of Saccharomyces cerevisiae was effective over a wide range of substrates, although differing with regard to their relative activity. Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity, particularly when a pyrimidine glucose nucleotide like UDPG was used, rather than a purine glucose nucleotide like GDPG. A high Vmax and a low Km value of UDPG show its greater affinity with TPS than GDPG or TDPG. Among the glucosyl acceptors TPS showed maximum activity with G-6-P which was followed by M-6-P and F-6-P. Effect of heparin was also extended to the purification of TPS activity, as it helped to retain both stability and activity of the final purified enzyme. Metal co-factors, specifically MnCl2 and ZnCl2 acted as stimulators, while enzyme inhibitors had very little effect on TPS activity. Metal chelators like CDTA, EGTA stimulated enzyme activity by chelation of metal inhibitors. Temperature and pH optima of the purified enzyme were determined to be 40 °C and pH 8.5 respectively. Enzyme activity was stable at 0–40 °C and at alkaline pH.  相似文献   

18.
The glucocerebrosidase of human placenta was studied with various potential inhibitors. Several compounds that resemble the lipoidal product of enzyme action, ceramide, proved to be excellent inhibitors, acting by mixed modes (primarily noncompetitively). These were N-decyl-dl-erythro-3-phenyl-2-amino-l, 3-propanediol and several p-substituted derivatives. These compounds were also highly effective in rat spleen toward glucocerebroside and p-nitrophenyl β-glucoside as substrates. The compounds were inactive toward the analogous enzyme, galactocerebrosidase of rat brain, and were slightly stimulatory toward the rat brain enzyme which makes galactocerebroside. Longer and shorter N-alkyl groups proved to be less effective. Decanoic acid amides of phenylaminopropanediol and related compounds proved to be relatively inert, although some were stimulatory. Deoxycorticosterone β-glucoside was a moderately effective noncompetitive inhibitor and is apparently hydrolyzed by a different glucosidase. p-Nitrophenyl β-glucoside was also a moderately effective inhibitor, acting by mixed modes. p-Chloromercuribenzenesulfonate was a good inhibitor, presumably acting on a sensitive cysteine residue. It is concluded that cerebrosidase contains two sensitive sites, one catalytic and the other allosteric, each containing an important anionic group and able to bind glucosides and ceramide-like compounds.  相似文献   

19.
Previous work from this laboratory has shown that 5-thio-d-glucose is a competitive inhibitor for active transport of d-glucose. The present work indicates that the thiosugar analog and its 1-phosphate can also interfere with d-glucose 6-P formation.5-Thio-d-glucose serves as a substrate for yeast hexokinase with a Km of 4 mm, and V of 8.8 nmol/min/μg of protein. The analog competitively inhibits d-glucose phosphorylation with a Ki of 20 mm.5-Thio-d-glucose 1-P can act as a substrate for rabbit skeletal muscle phosphoglucomutase with a Km of 60 μm and V of 0.17 μmol/min/μg of protein. Thus, 5-thio-d-glucose 1-P behaves as a near metabolic analog of d-glucose 1-P. 5-Thio-d-glucose 1-P is a competitive inhibitor of d-glucose 1-P conversion to the 6-P with a Ki of 16.2 μm.5-Thio-d-glucose 6-P produced by phosphorylation of 5-thio-d-glucose and by conversion from 5-thio-d-glucose 1-P was identified by chromatographic mobility and by color reactions.  相似文献   

20.

Background

Tuberculosis remains a major world-wide health threat which demands the discovery and characterisation of new drug targets in order to develop future antimycobacterials. The regeneration of methionine consumed during polyamine biosynthesis is an important pathway present in many microorganisms. The final step of this pathway, the conversion of ketomethiobutyrate to methionine, can be performed by aspartate, tyrosine, or branched-chain amino acid aminotransferases depending on the particular species examined.

Results

The gene encoding for branched-chain amino acid aminotransferase in Mycobacterium tuberculosis H37Rv has been cloned, expressed, and characterised. The enzyme was found to be a member of the aminotransferase IIIa subfamily, and closely related to the corresponding aminotransferase in Bacillus subtilis, but not to that found in B. anthracis or B. cereus. The amino donor preference for the formation of methionine from ketomethiobutyrate was for isoleucine, leucine, valine, glutamate, and phenylalanine. The enzyme catalysed branched-chain amino acid and ketomethiobutyrate transamination with a Km of 1.77 – 7.44 mM and a Vmax of 2.17 – 5.70 μmol/min/mg protein, and transamination of ketoglutarate with a Km of 5.79 – 6.95 mM and a Vmax of 11.82 – 14.35 μmol/min/mg protein. Aminooxy compounds were examined as potential enzyme inhibitors, with O-benzylhydroxylamine, O-t-butylhydroxylamine, carboxymethoxylamine, and O-allylhydroxylamine yielding mixed-type inhibition with Ki values of 8.20 – 21.61 μM. These same compounds were examined as antimycobacterial agents against M. tuberculosis and a lower biohazard M. marinum model system, and were found to completely prevent cell growth. O-Allylhydroxylamine was the most effective growth inhibitor with an MIC of 78 μM against M. marinum and one of 156 μM against M. tuberculosis.

Conclusion

Methionine formation from ketomethiobutyrate is catalysed by a branched-chain amino acid aminotransferase in M. tuberculosis. This enzyme can be inhibited by selected aminooxy compounds, which also have effectiveness in preventing cell growth in culture. These compounds represent a starting point for the synthesis of branched-chain aminotransferase inhibitors with higher activity and lower toxicity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号