首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 We introduce inhomogeneous, substrate dependent cell division in a time discrete, nonlinear matrix model of size-structured population growth in the chemostat, first introduced by Gage et al. [8] and later analysed by Smith [13]. We show that mass conservation is verified, and conclude that our system admits one non zero globally stable equilibrium, which we express explicitly. Then we run numerical simulations of the system, and compare the predictions of the model to data related to phytoplankton growth, whose obtention we discuss. We end with the identification of several parameters of the system. Received: 9 February 2000 / Revised version: 10 October 2001 / Published online: 23 August 2002 RID="*" ID="*" Present address: Department of Mathematics and Statistics, University of Victoria, B.C., Canada. e-mail: jarino@math.uvic.ca Key words or phrases: Chemostat – Structured population models – Discrete model – Inhomogeneous division size  相似文献   

2.
 Intracranial saccular aneurysms have been clinically observed to emit a transient sound, a bruit, on each heartbeat. The mechanism causing the bruits has been a matter of contention. A qualitative analysis of the nonlinear dynamical properties of the Shah-Humphrey model for periodic pressure forcing of a thin-necked saccular aneurysm, using the Fung nonlinear constitutive model for the aneurysm material, shows that a small blood pressure jump on each beat, whether the pressure is weakly aperiodic or periodic, induces transients in the radial deformation response of the aneurysmal wall on each heartbeat. These transient vibrations, which have a component with frequency near the natural frequency of the system but are not resonant phenomena and which decay rapidly to a limit cycle during each distinct forcing pressure cycle, can generate the bruits. Received: 21 November 2000 / Revised version: 9 August 2001 / Published online: 23 August 2002 Mathematics Subject Classification (2000): 92B99, 70K40, 70K05 Key words or phrases: Intracranial saccular aneurysm – Bruit – Spectrum – Nonlinear dynamics – Transients – Vortex shedding – Fung model  相似文献   

3.
 We start from a stochastic SIS model for the spread of epidemics among a population partitioned into M sites, each containing N individuals; epidemic spread occurs through within-site (`local') contacts and global contacts. We analyse the limit behaviour of the system as M and N increase to ∞. Two limit procedures are considered, according to the order in which M and N go to ∞; independently of the order, the limiting distribution of infected individuals across sites is a probability measure, whose evolution in time is governed by the weak form of a PDE. Existence and uniqueness of the solutions to this problem is shown. Finally, it is shown that the infected distribution converges, as time goes to infinity, to a Dirac measure at the value x * , the equilibrium of a single-patch SIS model with contact rate equal to the sum of local and global contacts. Received: 18 July 2001 / Revised version: 16 March 2002 / Published online: 26 September 2002 Mathematics Subject Classification (2000): 92D30, 60F99 Key words or phrases: SIS epidemic – Metapopulation – Markov population processes – Weak convergence of measures  相似文献   

4.
 We consider a partially coupled diffusive population model in which the state variables represent the densities of the immature and mature population of a single species. The equation for the mature population can be considered on its own, and is a delay differential equation with a delay-dependent coefficient. For the case when the immatures are immobile, we prove that travelling wavefront solutions exist connecting the zero solution of the equation for the matures with the delay-dependent positive equilibrium state. As a perturbation of this case we then consider the case of low immature diffusivity showing that the travelling front solutions continue to persist. Our findings are contrasted with recent studies of the delayed Fisher equation. Travelling fronts of the latter are known to lose monotonicity for sufficiently large delays. In contrast, travelling fronts of our equation appear to remain monotone for all values of the delay. Received: 1 November 2001 / Revised version: 10 May 2002 / Published online: 23 August 2002 Mathematics Subject Classification (2000): 35K57, 92D25 Key words or phrases: Age-structure – Time-delay – Travelling Fronts – Reaction-diffusion  相似文献   

5.
 It is shown that the methods previously used by the author [Wei82] and by R. Lui [Lui89] to obtain asymptotic spreading results and sometimes the existence of traveling waves for a discrete-time recursion with a translation invariant order preserving operator can be extended to a recursion with a periodic order preserving operator. The operator can be taken to be the time-one map of a continuous time reaction-diffusion model, or it can be a more general model of time evolution in population genetics or population ecology in a periodic habitat. Methods of estimating the speeds of spreading in various directions will also be presented. Received: 12 July 2001 / Revised version: 19 July 2002 / Published online: 17 October 2002 Mathematics Subject Classification (2000): 92D40, 92D25, 35K55, 35K57, 35B40 Keywords or phrases: Periodic – Spreading speed – Traveling wave  相似文献   

6.
 The urine concentrating mechanism of mammals and birds depends on a counterflow configuration of thousands of nearly parallel tubules in the medulla of the kidney. Along the course of a renal tubule, cell type may change abruptly, resulting in abrupt changes in the physical characteristics and transmural transport properties of the tubule. A mathematical model that faithfully represents these abrupt changes will have jump discontinuities in model parameters. Without proper treatment, such discontinuities may cause unrealistic transmural fluxes and introduce suboptimal spatial convergence in the numerical solution to the model equations. In this study, we show how to treat discontinuous parameters in the context of a previously developed numerical method that is based on the semi-Lagrangian semi-implicit method and Newton's method. The numerical solutions have physically plausible fluxes at the discontinuities and the solutions converge at second order, as is appropriate for the method. Received: 13 November 2001 / Revised version: 28 June 2002 / Published online: 26 September 2002 This work was supported in part by the National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases, grant DK-42091.) Mathematics Subject Classification (2000): 65-04, 65M12, 65M25, 92-04, 92C35, 35-04, 35L45 Keywords or phrases: Mathematical models – Differential equations – Mathematical biology – Kidney – Renal medulla – Semi-Lagrangian semi-implicit  相似文献   

7.
 We examine a generalised SIR model for the infection dynamics of four competing disease strains. This model contains four previously-studied models as special cases. The different strains interact indirectly by the mechanism of cross-immunity; individuals in the host population may become immune to infection by a particular strain even if they have only been infected with different but closely related strains. Several different models of cross-immunity are compared in the limit where the death rate is much smaller than the rate of recovery from infection. In this limit an asymptotic analysis of the dynamics of the models is possible, and we are able to compute the location and nature of the Takens–Bogdanov bifurcation associated with the presence of oscillatory dynamics observed by previous authors. Received: 5 December 2001 / Revised version: 5 May 2002 / Published online: 17 October 2002 Keywords or phrases: Infection – Pathogen – Epidemiology – Multiple strains – Cross-immunity – Oscillations – Dynamics – Bifurcations  相似文献   

8.
Existence of traveling wave solutions in a diffusive predator-prey model   总被引:1,自引:0,他引:1  
 We establish the existence of traveling front solutions and small amplitude traveling wave train solutions for a reaction-diffusion system based on a predator-prey model with Holling type-II functional response. The traveling front solutions are equivalent to heteroclinic orbits in R 4 and the small amplitude traveling wave train solutions are equivalent to small amplitude periodic orbits in R 4 . The methods used to prove the results are the shooting argument and the Hopf bifurcation theorem. Received: 25 May 2001 / Revised version: 5 August 2002 / Published online: 19 November 2002 RID="*" ID="*" Research was supported by the National Natural Science Foundations (NNSF) of China. RID="*" ID="*" Research was partially supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. On leave from the Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada. Mathematics Subject Classification (2000): 34C35, 35K57 Key words or phrases: Traveling wave solution – Wazewski set – Shooting argument – Hopf bifurcation Acknowledgements. We would like to thank the two referees for their careful reading and helpful comments.  相似文献   

9.
 We derive models for chemosensitive movement based on Cattaneo's law of heat propagation with finite speed. We apply the model to pattern formation as observed in experiments with Dictyostelium discoideum, with Salmonella typhimurium and with Escherichia coli. For Salmonella typhimurium we make predictions on pattern formation which can be tested in experiments. We discuss the relations of the Cattaneo models to classical models and we develop an effective numerical scheme. Received: 8 October 2001 / Revised version: 2 August 2002 / Published online: 19 November 2002 Key words or phrases: Chemotaxis – Aggregation – Cattaneo model – Numerical schemes Acknowledgements. We are very grateful for comments of S. Noelle concerning the numerical scheme. We thank K.P. Hadeler and C. Schmeiser for helpful remarks. The research was supported by the Deutsche Forschungsgemeinschaft, research project ANumE and the Austrian Science Foundation, grant no. W008.  相似文献   

10.
 We consider a discrete time model of semelparous biennial population dynamics. Interactions between individuals are modelled with the aid of an ``environmental' variable I. The impact on and the sensitivity to the environmental condition is age specific. The main result is that competitive exclusion between the year classes is possible as is their coexistence. For moderate values of the basic reproduction ratio R 0 there is a strict dichotomy: depending on the other parameters we either find competitive exclusion or coexistence. We characterize rather precisely the patterns of age specific impact and sensitivity that lead to either of these outcomes. Received: 13 July 2001 / Revised version: 26 June 2002 / Published online: 19 November 2002 Key words or phrases: Competitive exclusion – Semelparous species – Periodical insects  相似文献   

11.
 The persistence of Influenza A in the human population relies on continual changes in the viral surface antigens allowing the virus to reinfect the same hosts every few years. The epidemiology of such a drifting virus is modeled by a discrete season-to-season map. During the epidemic season only one strain is present and its transmission dynamics follows a standard epidemic model. After the season, cross-immunity to next year's virus is determined from the proportion of hosts that were infected during the season. A partial analysis of this map shows the existence of oscillations where epidemics occur at regular or irregular intervals. Received: 16 February 2001 / Revised version: 11 June 2002 / Published online: 28 February 2003 Key words or phrases: Infectious disease – Influenza drift – Cross-immunity – Seasonal epidemics – Iterated map  相似文献   

12.
 A mathematical model is developed with a highly controlled birth and death process for precursor cells. This model is both biologically- and statistically-based. The controlled growth and differentiation (CGD) model limits the number of replications allowed in the development of a tissue or organ and thus, more closely reflects the presence of a true stem cell population. Leroux et al. (1996) presented a biologically-based dose-response model for developmental toxicology that was derived from a partial differential equation for the generating function. This formulation limits further expansion into more realistic models of mammalian development. The same formulae for the probability of a defect (a system of ordinary differential equations) can be derived through the Kolmogorov forward equations due to the nature of this Markov process. This modified approach is easily amenable to the expansion of more complicated models of the developmental process such as the one presented here. Comparisons between the Leroux et al. (1996) model and the controlled growth and differentiation (CGD) model as developed in this paper are also discussed. Received: 8 June 2001 / Revised version: 15 June 2002 / Published online: 26 September 2002 Keywords or phrases: Teratology – Multistate process – Cellular kinetics – Numerical simulation  相似文献   

13.
 Exact formulas for the mean and variance of the proportion of different types in a fixed generation of a multi-type Galton-Watson process are derived. The formulas are given in terms of iterates of the probability generating function of the offspring distribution. It is also shown that the sequence of types backwards from a randomly sampled particle in a fixed generation is a non-homogeneous Markov chain where the transition probabilities can be given explicitly, again in terms of probability generating functions. Two biological applications are considered: mutations in mitochondrial DNA and the polymerase chain reaction. Received: 10 June 2001 / Revised version: 21 November 2001 / Published online: 23 August 2002 Mathematics Subject Classification (2000): Primary 60J80, Secondary 92D10, 92D25 Key words or phrases: Multi-type Galton-Watson process – sampling formula – PCR – mitochondrial DNA  相似文献   

14.
 Two results are presented for problems involving alleles with a continuous range of effects. The first result is a simple yet highly accurate numerical method that determines the equilibrium distribution of allelic effects, moments of this distribution, and the mutational load. The numerical method is explicitly applied to the mutation-selection balance problem of stabilising selection. The second result is an exact solution for the distribution of allelic effects under weak stabilising selection for a particular distribution of mutant effects. The exact solution is shown to yield a distribution of allelic effects that, depending on the mutation rate, interpolates between the ``House of Cards' approximation and the Gaussian approximation. The exact solution is also used to test the accuracy of the numerical method. Received: 7 November 2001 / Revised version: 5 September 2002 / Published online: 18 December 2002 Key words or phrases: Continuum of alleles – Numerical solution – Exact solution – Mutation selection balance – Stabilising selection  相似文献   

15.
Early development and quorum sensing in bacterial biofilms   总被引:3,自引:0,他引:3  
 We develop mathematical models to examine the formation, growth and quorum sensing activity of bacterial biofilms. The growth aspects of the model are based on the assumption of a continuum of bacterial cells whose growth generates movement, within the developing biofilm, described by a velocity field. A model proposed in Ward et al. (2001) to describe quorum sensing, a process by which bacteria monitor their own population density by the use of quorum sensing molecules (QSMs), is coupled with the growth model. The resulting system of nonlinear partial differential equations is solved numerically, revealing results which are qualitatively consistent with experimental ones. Analytical solutions derived by assuming uniform initial conditions demonstrate that, for large time, a biofilm grows algebraically with time; criteria for linear growth of the biofilm biomass, consistent with experimental data, are established. The analysis reveals, for a biologically realistic limit, the existence of a bifurcation between non-active and active quorum sensing in the biofilm. The model also predicts that travelling waves of quorum sensing behaviour can occur within a certain time frame; while the travelling wave analysis reveals a range of possible travelling wave speeds, numerical solutions suggest that the minimum wave speed, determined by linearisation, is realised for a wide class of initial conditions. Received: 10 February 2002 / Revised version: 29 October 2002 / Published online: 19 March 2003 Key words or phrases: Bacterial biofilm – Quorum sensing – Mathematical modelling – Numerical solution – Asymptotic analysis – Travelling wave analysis  相似文献   

16.
The purpose of this paper is to present a mathematical model for the tumor vascularization theory of tumor growth proposed by Judah Folkman in the early 1970s and subsequently established experimentally by him and his coworkers [Ausprunk, D. H. and J. Folkman (1977) Migration and proliferation of endothelial cells in performed and newly formed blood vessels during tumor angiogenesis, Microvasc Res., 14, 53–65; Brem, S., B. A. Preis, ScD. Langer, B. A. Brem and J. Folkman (1997) Inhibition of neovascularization by an extract derived from vitreous Am. J. Opthalmol., 84, 323–328; Folkman, J. (1976) The vascularization of tumors, Sci. Am., 234, 58–64; Gimbrone, M. A. Jr, R. S. Cotran, S. B. Leapman and J. Folkman (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea, J. Nat. Cancer Inst., 52, 413–419]. In the simplest version of this model, an avascular tumor secretes a tumor growth factor (TGF) which is transported across an extracellular matrix (ECM) to a neighboring vasculature where it stimulates endothelial cells to produce a protease that acts as a catalyst to degrade the fibronectin of the capillary wall and the ECM. The endothelial cells then move up the TGF gradient back to the tumor, proliferating and forming a new capillary network. In the model presented here, we include two mechanisms for the action of angiostatin. In the first mechanism, substantiated experimentally, the angiostatin acts as a protease inhibitor. A second mechanism for the production of protease inhibitor from angiostatin by endothelial cells is proposed to be of Michaelis-Menten type. Mathematically, this mechanism includes the former as a subcase. Our model is different from other attempts to model the process of tumor angiogenesis in that it focuses (1) on the biochemistry of the process at the level of the cell; (2) the movement of the cells is based on the theory of reinforced random walks; (3) standard transport equations for the diffusion of molecular species in porous media. One consequence of our numerical simulations is that we obtain very good computational agreement with the time of the onset of vascularization and the rate of capillary tip growth observed in rabbit cornea experiments [Ausprunk, D. H. and J. Folkman (1977) Migration and proliferation of endothelial cells in performed and newly formed blood vessels during tumor angiogenesis, Microvasc Res., 14, 73–65; Brem, S., B. A. Preis, ScD. Langer, B. A. Brem and J. Folkman (1997) Inhibition of neovascularization by an extract derived from vitreous Am. J. Opthalmol., 84, 323–328; Folkman, J. (1976) The vascularization of tumors, Sci. Am., 234, 58–64; Gimbrone, M. A. Jr, R. S. Cotran, S. B. Leapman and J. Folkman (1974) Tumor growth and neovascularization: An experimental model using the rabbit cornea, J. Nat. Cancer Inst., 52, 413–419]. Furthermore, our numerical experiments agree with the observation that the tip of a growing capillary accelerates as it approaches the tumor [Folkman, J. (1976) The vascularization of tumors, Sci. Am., 234, 58–64]. An erratum to this article is available at .  相似文献   

17.
 The nature of the association between two species may vary depending on population abundances, age or size of individuals, or environmental conditions. Interactions may switch between beneficial and detrimental depending on the net balance of costs and benefits involved for each species. We study the repercussion of the ecological setting on the outcomes of conditional or variable interactions by means of a model that incorporates density-dependent interaction coefficients; that is, interaction α-functions. These characterize the responsiveness and sensitivity of the association to changes in partner's abundance, and can take positive and negative values. Variable outcomes – and transitions between them – are categorized as homeo- or allo-environmental, that is, occurring under the same ecological setting, or not, respectively. Bifurcation analyses show that these dynamics are moulded by ecological factors that are: intrinsic to the nature of the association (concerning the sensitivity of the interaction), and extrinsic to the association itself (the quality of the environment referred to each species alone). The influence of these factors may be conflicting; consequently, the dynamics involve catastrophic events. In a facultative variable association, stable coexistence is expected when environmental conditions are adverse; otherwise, the exclusion of one species is the likely outcome. Remarkable situations as the switching of victim-exploiter roles illustrate the theoretical perspective. Received: 15 December 2001 / Revised version: 18 November 2002 / Published online: 28 February 2003 Key words or phrases: Variable population interactions – Conditional interactions – Costs and benefits – Density dependent interaction coefficient – Hysteresis – Symbiosis – Mutualism – Parasitism  相似文献   

18.
 Magarshak et al. represented an RNA molecule as a complex vector and an RNA secondary structure Γ as a complex matrix S Γ in such a way that the molecule represented by was compatible with the secondary structure Γ if and only if . They only considered Watson-Crick base pairs and their representation cannot be extended to allow for GU pairs. In this paper we study a generalization of Magarshak's representation that allows for these pairs, and in particular we provide a family of algebraic structures where that generalization can be carried out. We also show that this representation can be used to compare secondary structures, through transfer matrices which transform the representation of one secondary structure into the representation of the other. Received: 10 December 2001 / Revised version: 7 May 2002 / Published online: 28 February 2003 Key words or phrases: RNA secondary structure – Algebra – Finite field  相似文献   

19.
 We deduce and prove a general formula to approximate the change in frequency of a mutant allele under weak selection, when this allele is introduced in small frequency into a population which was previously at a fixation state. We apply the formula to autosomal genes in partial selfing models and to autosomal as well as sex-linked genes in partial sib mating models. It is shown that the fate of a rare mutant allele depends not only on the selection parameters, the inbreeding coefficient and the reproductive values of the sexes in sex-differentiated populations, but also on coefficients of relatedness between mates. This is interpreted as a kin selection effect caused by inbreeding per se. Received: 3 December 2001 / Revised version: 10 April 2002 / Published online: 19 November 2002 Research supported in part by NSERC of Canada and FCAR of Québec. Mathematics Subject Classification (2000): Primary 60J80, Secondary 92D10, 92D25 Keywords or phrases: Adaptive topography – Partial selfing – Partial sib mating – Kin selection  相似文献   

20.
 We consider a model for a disease with a progressing and a quiescent exposed class and variable susceptibility to super-infection. The model exhibits backward bifurcations under certain conditions, which allow for both stable and unstable endemic states when the basic reproduction number is smaller than one. Received: 11 October 2001 / Revised version: 17 September 2002 / Published online: 17 January 2003 Present address: Department of Biological Statistics and Computational Biology, 434 Warren Hall, Cornell University, Ithaca, NY 14853-7801 This author was visiting Arizona State University when most of the research was done. Research partially supported by NSF grant DMS-0137687. This author's research was partially supported by NSF grant DMS-9706787. Key words or phrases: Backward bifurcation – Multiple endemic equilibria – Alternating stability – Break-point density – Super-infection – Dose-dependent latent period – Progressive and quiescent latent stages – Progression age structure – Threshold type disease activation – Operator semigroups – Hille-Yosida operators – Dynamical systems – Persistence – Global compact attractor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号