首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Isolated liver cells from rats fed a diet deficient in essential fatty acids were used to study the oxidation, esterification and, especially, the desaturation and chain elongation of [1-14C]linoleic acid. 14C-labelled arachidonic acid (20:4) and smaller amounts of eicosatrienoic acid (20:3) were recovered mainly in the phospholipids, while gamma-linolenic acid (18:3) was found in both the phospholipids and the triacylglycerol fraction. Lactate strongly increased the formation of arachidonic acid, which was found mainly in the phosphatidylcholine and the phosphatidylinositol fractions. Lactate reduced the amounts of gamma-linolenic acid. Glucagon and (+)-decanoylcarnitine reduced the formation of arachidonic acid, and (+)-decanoylcarnitine increased the incorporation of gamma-linolenic acid especially, in the triacylglycerol fraction. Increasing concentrations of the [1-14C]linoleic acid substrate increased the formation of arachidonic acid and of the other chain-elongated or desaturated fatty acids. Lactate also stimulated the formation of arachidonic acid in liver cells from animals fed adequate amounts of essential fatty acids. It is suggested that dietary and hormonal factors which can change the intracellular levels of malonyl-CoA may influence both the ratio of arachidonic acid/gamma-linolenic acid formed and the total amounts of desaturated and chain-elongated fatty acids formed from linoleic acid.  相似文献   

2.
Isolated hepatocytes were incubated in the presence of [14C]palmitic, [14C]linoleic or [14C]linolenic acid and the time-courses of incorporation of radioactivity into phosphatidylcholine and phosphatidylethanolamine of microsomes and mitochondria were followed. For this purpose a procedure was developed for HPLC separation of 9-diazomethylanthracene (ADAM) derivatives of fatty acids. When [14C]palmitic acid was used, the major product of elongation and desaturation was octadecadienoic acid, which accounted for 35-65% of the total radioactivity. Labeled palmitoleic, stearic and oleic acids could also be isolated. In fatty acids which do not participate to any large extent in deacylation-reacylation reactions, the pattern of incorporation was characteristic: a high rate of incorporation into microsomal and a low rate of incorporation into mitochondrial phospholipids during the first 40 min, followed by a decrease in the former and an increase in mitochondrial labeling. This pattern is consistent with the fact that de novo synthesis of these two phospholipids occurs in the endoplasmic reticulum in vivo. When cells were incubated in the presence of [14C]linoleic acid, 70-90% of the radioactivity recovered in phospholipids was in this same form, whereas the remaining label was mainly in arachidonic acid and, to some extent, in eicosatrienoic acid. When hepatocytes were incubated in the presence of [14C]linolenic acid, 70-85% of the radioactivity in isolated phospholipids was associated with linolenic acid. As much as 20% of the label was recovered in docosahexanoic acid and 5-10% in arachidonic acid. In the case of the two latter labeled substrates the exchange reactions seem to dominate over de novo synthesis. For phospholipids synthesized de novo the transfer from the endoplasmic reticulum to mitochondria requires about 3 h.  相似文献   

3.
Maternal and fetal plasma concentrations of free fatty acids, triacylglycerols and phospholipids and the profile of their fatty acids were measured in three catheterized and unanaesthetized sheep. Fetal concentrations of all three lipid fractions were low and did not correlate with maternal concentrations. There were no measurable umbilical venous-arterial differences. Linoleic acid concentrations were low in both mother and fetus. The fatty acid composition of fetal adipose tissue, liver, lung and cerebellum of five animals was analysed. Again linoleic acid levels were very low, but phospholipids contained 2-8% arachidonic acid. [14C] linoleic acid and [3H] palmitic acid were infused intravenously into three ewes. Only trace amounts of labelled fatty acids were found in fetal plasma and these were confined to the free fatty acids. 14C-label was incorporated into fetal tissue lipids, but most of this probably was due to fetal lipid synthesis from [14C] acetate or other water-soluble products of maternal [14C] linoleic acid catabolism. It is concluded that only trace amounts of fatty acids cross the sheep placenta. They are derived mainly from the maternal plasma free fatty acids and might just be sufficient to be the source of the small amounts of essential fatty acids found in the lamb fetus, but are insignificant in terms of energy supply or lipid storage.  相似文献   

4.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

5.
The unsaturated fatty acids that rapidly accumulate during ischemia are thought to participate in inducing irreversible brain injury, especially because they are highly susceptible to peroxidation when the tissue is reoxygenated. Our hypothesis was that peroxidation products of unsaturated fatty acids interfere with the reacylation of synaptic phospholipids, a process essential to membrane repair. To test this hypothesis, we have examined the effect of fatty acid hydroperoxides on incorporation of [1-14C]arachidonic acid into synaptosomal phospholipids. Rat forebrain synaptosomes were incubated with arachidonic or linoleic acid hydroperoxides and [14C]arachidonate, and then lipids were extracted and separated by TLC. Both hydroperoxides inhibited [14C]arachidonate incorporation into phospholipids in a concentration-dependent manner, with 50% inhibition occurring at less than 25 microM hydroperoxide, in both the absence and presence of exogenous lysophospholipids. The inhibition was of the non-competitive type. It is concluded that (a) low levels of fatty acid hydroperoxides inhibit the reacylation of synaptosomal phospholipids, and (b) this inhibition may constitute an important mechanism whereby peroxidative processes contribute to irreversible brain damage.  相似文献   

6.
In BGM cells chronically infected with measles virus, although the composition of the phospholipids is unaltered, the fatty acid composition is modified. Uninfected, lytic and persistently infected cells were labelled with [3H]arachidonic acid and [14C]stearic acid and their metabolic fate analysed. No difference in the total incorporation was observed in the different systems. However, the [14C]stearic acid and [3H]arachidonic acid were incorporated up to 2-fold and 13-fold respectively greater into the neutral lipid of persistently infected compared with that of uninfected cells. Both radioactive fatty acids were specifically accumulated in the triacylglycerol and non-esterified fatty acids fractions. Lytically infected cells were similar to uninfected cells. Although there was no significant difference in the incorporation of radioactivity into the total phospholipid in either system, there was a large decrease in [3H]arachidonic acid incorporated into phosphatidylethanolamine and to a lesser extent phosphatidylcholine and phosphatidylinositol in persistently infected cells. [14C]Stearic acid incorporation was also reduced in phosphatidylcholine and phosphatidylethanolamine fractions of persistently infected cells.  相似文献   

7.
The influence of retinoic acid on the incorporation of [1-14C]palmitic acid and [1-14C]arachidonic acid into phospholipids was examined in guinea pig peritoneal granulocytes. All-trans-retinoic acid inhibited the incorporation of both fatty acids into phosphatidic acid and phosphatidylinositol. However, it stimulated the incorporation of both fatty acids into phosphatidylcholine but not other phospholipids. All-trans-retinoic acid was more effective than 13-cis-retinoic acid. The influence of all-trans-retinoic acid on the acylation of phospholipids was concentration-dependent with significant effect occurring at 2.1 microM. The loss of labeled fatty acids from prelabeled phospholipids and the transport of labeled fatty acids into granulocytes were not responsive to the presence of retinoic acid in the incubation media. These results suggest that retinoic acid may affect the activities of acyltransferases involved in the synthesis of phosphatidic acid, phosphatidylinositol and phosphatidylcholine.  相似文献   

8.
《Insect Biochemistry》1986,16(2):387-393
Aspects of testicular fatty acid biochemistry from the Australian field cricket, Teleogryllus commodus, are reported. Over 10% of the phospholipid fatty acids were C20 polyunsaturated fatty acids (PUFAs), with nearly 6% arachidonic acid (20:4). The testes and ovaries accumulated a large proportion of label from radioactive arachidonic acid that was injected into the hemocoel (about 30%). Specificity in the uptake was shown by comparison to a similar study with labelled stearic acid, in which only 1.5% of the radioactivity was taken up by testes. Sixty percent of the radioactivity taken up by testes from [3H]20:4 was incorporated into phospholipids and 30% into triacylglycerols. Fat body of males and females incorporated 27% of the [3H]20:4 into phospholipids and 68% (males) or 55% (females) into triacylglcyerols. Radioactivity from [1-14C]acetate was incorporated into testicular linoleic acid and eicosatrienoic acid, but not eicosatetraenoic acid, suggesting the de novo biosynthesis of both 18:2 and a C20 PUFA by this species. Label from injected [U-14C]linoleic acid was recovered mostly as linoleic acid, with a small portion of the recovered radioactivity in eicosatrienoic acid, but not eicosatetraenoic acid. Very little label from injected linoleic acid occurred as monounsaturated or saturated fatty acids, indicating only slight, if any, β-oxidation of 18:2 to acetate and subsequent lipid synthesis.  相似文献   

9.
The polyunsaturated fatty acid composition of Brugia malayi microfilariae was analyzed by gas chromatography and compared to that of sera from B. malayi-infected jirds. The essential fatty acid, linoleic acid (18:2 omega 6), was the most abundant fatty acid present in both microfilarial total lipids and phospholipids as well as in jird sera. In contrast, arachidonic acid (20:4 omega 6), as well as the 18:3 omega 6, 20:2 omega 6, and 20:3 omega 6 intermediates that are formed in the enzymatic conversion of linoleic acid to arachidonic acid, were proportionally more abundant in microfilariae than in jird sera. To assess the capacity of microfilariae to transform linoleic acid into arachidonic acid, B. malayi microfilariae were incubated with [14C]linoleic acid. Microfilarial lipids were extracted and resolved by high-pressure liquid chromatography and thin-layer chromatography. A portion of [14C]linoleic acid incorporated by microfilariae was converted to [14C]arachidonic acid. Thus, microfilariae can not only incorporate exogenous arachidonic acid, as previously demonstrated, but can also synthesize arachidonic acid from exogenous linoleic acid. The capacity of microfilariae to utilize specific host polyunsaturated fatty acids raises the possibility that intravascular filarial parasites may synthesize eicosanoid metabolites of arachidonic acid that could mediate filarial-host cell interactions.  相似文献   

10.
Abstract

The unsaturated fatty acids oleic, linoleic and arachidonic inhibited binding of ligands to the ouabain, opiate, and β-adrenergic plasma membrane receptors. Low concentrations of fatty acids slightly increased the binding of ouabain to its binding sites. The effect of these fatty acids on β-adrenergic sensitive adenylate cyclase was more complex. 0.2–0.3 mM fatty acids increased adenylate cyclase activity, while higher concentrations of arachidonic and linoleic acids, but not oleic acid  相似文献   

11.
The incorporation and redistribution of [1-14C]arachidonic acid in SK-N-BE human neuroblastoma cell phospholipids were investigated. By continuous labelling in serum-enriched medium, a rapid radioactivity incorporation into phosphatidylcholine (PtdCho), phosphatidylinositol, and phosphatidylserine was observed; initially, phosphatidylethanolamine (PtdEtn) was poorly labelled, but at later stages it displayed the highest level of arachidonic acid incorporation, in comparison with other phospholipid classes. Labelling of triacylglycerols was also observed. When cells were pulse-labelled with [1-14C]arachidonic acid and then reincubated in label-free medium, a decrease of the radioactivity in triacylglycerols was observed initially, paralleled by an increase of phospholipid labelling; thereafter, arachidonic acid redistribution was consistent with a net decrease of the radioactivity associated with PtdCho acid-stable forms (i.e., diacyl plus alkylacyl forms), concomitantly with a net labelling increase of both acid-stable PtdEtn and alkenylacyl-PtdEtn. Data indicate the following: (a) neuroblastoma cells incorporate arachidonic acid into phospholipids through complex kinetics involving transfer of the fatty acid from acid-stable PtdCho to both alkenylacyl-PtdEtn and acid-stable PtdEtn; and (b) triacylglycerols act as storage molecules for arachidonic acid which is subsequently incorporated into phospholipids. The possibility that arachidonic acid transfer to PtdEtn subclasses is driven by distinct mechanisms is discussed.  相似文献   

12.
Incorporation of [1-14C]palmitic (16:0) and [1-14C]linoleic (18:2 omega 6) acids into microsomal membranes of proximal (jejunum) and distal (ileum) regions of rat small intestine was investigated, and the lipid composition, including fatty acid profiles of membrane phospholipids, was determined. Jejunal microsomes contained significantly higher amounts of total phospholipids, phosphatidylcholine, and phosphatidylinositol, and lower amounts of cholesterol and sphingomyelin when compared with ileal microsomes. Jejunal microsomal phospholipids contained higher levels of stearic (18:0), 18:2 omega 6, and eicosapentaenoic (20:5 omega 3) acids followed by reduced levels of oleic (18:1 omega 9), arachidonic (20:4 omega 6), and docosahexaenoic (22:6 omega 3) acids when compared with those from the ileum, except for phosphatidylinositol where no significant difference between 20:4 omega 6 content of each site was observed. In both jejunal and ileal microsomes, incorporation of [1-14C]18:2 omega 6 was significantly higher than that of [1-14C]16:0. Incorporation of both [1-14C]16:0 and [1-14C]18:2 omega 6 was significantly higher in jejunal microsomal lipid fractions (phospholipids, diacylglycerols, triacylglycerols) when compared with the ileal microsomal fraction. These data suggest that (1) jejunal and ileal microsomal membranes differ from each other in terms of lipid composition and lipid synthesis, (2) site variations in the specificity of acyltransferases for different fatty acids exist, and (3) higher delta 9-, delta 6-, delta 5-, and delta 4-desaturase activities exist in ileal compared with jejunal enterocytes.  相似文献   

13.
Effects on the linoleic acid metabolism in vivo of three dietary fats, rich in either oleic acid, trans fatty acids or alpha-linolenic acid, and all with the same linoleic acid content, were investigated in male Wistar rats. After 6 weeks of feeding, the rats were intubated with [1-14C]linoleic acid and [3H]oleic acid. The incorporation of these radiolabels into liver, heart and serum was investigated 2, 4, 8, 24 and 48 h after intubation. The amount of 14C-labelled arachidonic acid incorporated into the liver phospholipid of the group fed the oleic acid-rich diet was significantly higher than that of the other groups. However, compared to the trans fatty acids-containing diet, the oleic acid-rich diet induced only a slightly higher arachidonic acid level in the phospholipid fraction of the tissues as determined by GLC. Dietary alpha-linolenic acid more than halved the arachidonic acid levels. Our results do not support the hypothesis that the delta 6-desaturase system actually determines the polyunsaturated fatty acid levels in tissue lipids by regulating the amount of polyunsaturated fatty acids (e.g., arachidonic acid) synthesized. The biosynthesis of polyunsaturated fatty acids only is not sufficient to explain the complicated changes in fatty acid compositions as observed after feeding different dietary fats.  相似文献   

14.
In this paper we report that palmitoyl-L-carnitine can be a metabolic intermediate of the fatty acid incorporation pathway into erythrocyte membrane phosphatidylcholine, and phosphatidylethanolamine. Phospholipid acylation was evaluated by measuring the incorporation of radioactive [1-14C]-palmitoyl-L-carnitine in membrane erythrocyte ghost phospholipids in the presence or absence of CoA. CoA highly stimulated the incorporation of [1-14C]-palmitic acid into both the phospholipids examined, although the incorporation was also evident in the absence of added CoA. Incorporation of [1-14C]-palmitic acid into phosphatidylcholine was greater than into phosphatidylethanolamine. 2-Bromo-palmitoyl-CoA, an irreversible inhibitor of the erythrocyte carnitine palmitoyltransferase, inhibited the acylation process.  相似文献   

15.
We have investigated whether exposure of human platelets to elevated concentrations of linoleic acid, the principal dietary polyunsaturate, would influence platelet thromboxane A2 release. Platelets were incubated with albumin-bound linoleic acid at 30°C for 24 h, with prostaglandin E1 added to prevent aggregation. The linoleic acid supplemented platelets released, on averaged, 50% less thromboxane A2 in response to stimulation with thrombin than corresponding control platelets. Other fatty acids were without appreciable effect. The inhibition of thrombin-stimulated thromboxane A2 release was dependent on the time and temperature of incubation, as well as on the concentration of added linoleic acid. Supplementation increased the amount of linoleic acid in the platelet phospholipids, but the arachidonic acid content of the phospholipids was reduced. [1-14C]Linoleic acid was not converted to arachidonic acid by the platelets. Linoleic acid was released exclusively form the inositol phosphoglycerides when the enriched platelets were stimulated with thrombin. The linoleate-enriched platelets converted less [1-14C]arachidonic acid to all prostaglandin products, suggesting that the platelet cyclooxygenase was partially inhibited.  相似文献   

16.
The effect of electroconvulsive shock on the labeling of phospholipids and neutral lipids in mice brains was examined after intracerebral injection of [1-14C] arachidonic acid or [1-14C]palmitic acid. Electroconvulsive shock reduced greatly the removal of radiolabeled arachidonic acid from the free fatty acid pool. At the same time, the incorporation of arachidonic acid was partially inhibited in triacylglycerol, diacylglycerol, and phosphatidylinositol, whereas the incorporation of [1-14C]palmitic acid was not affected. Pretreatment with desipramine and pargyline potentiated the lipid effect of electroconvulsive shock in neutral glycerides. These electroconvulsive shock-induced changes reflect alterations in the metabolism of intracerebrally injected arachidonic acid, but not of similarly injected palmitic acid. From the available data whether decreased ATP, enzyme inhibition or other factors are involved cannot be ascertained. Moreover, the electroconvulsive shock-enhanced endogenous free arachidonic acid may possibly dilute the injected radiolabeled fatty acid, thus decreasing its availability for arachidonoyl-coenzyme A synthesis. Hence, a partial inhibition of the activation-acylation of these fatty acids, primarily arachidonic acid, also may be involved in the seizure-induced accumulation of free fatty acids in the brain.  相似文献   

17.
The effect of divalent cation ionophore, A23187, on the incorporation of [1-14C]palmitic acid, [1-14C]linoleic acid and [U-14C]glycerol into glycerolipids of polymorphonulcear leukocytes was examined. Ionophore A23187 stimulated the labeling of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and diacylglycerol by both labeled fatty acids and glycerol. [1-14C]Palmitic acid and [1-14C]linoleic acid incorporation into phosphatidylcholine and triacylglycerol was reduced by the presence of the ionophore in the incubation medium, while [U-14C]glycerol labeling of these lipids was not significantly changed under identical conditions. These data reflect that the acylation of sn-glycerol 3-phosphate is activated, and the acylations of lysophosphatidyl-choline and endogenous diacylglycerol are inhibited in cells incubated with ionophore A23187. External calcium was not required for the ionophore effect on the incorporation of labeled fatty acids and glycerol. It is suggested that the ionophore alters the metabolism of the fatty acid and glycerol moieties of glycerolipids by changing the distribution of intracellular calcium of leukocytes.  相似文献   

18.
We have examined the preferential incorporation of specific fatty acids into phospholipid classes of cultured human umbilical vein endothelial cells. Pulse-labeling of human umbilical vein endothelial cell phospholipids with radiolabeled fatty acids and inhibition of radiolabeled fatty acid incorporation by competition with excess, unlabeled fatty acids in pair-wise combinations revealed two distinct classes of esterification systems into human umbilical vein endothelial cell phospholipids. The eicosanoid precursor fatty acids, including arachidonate, 8,11,14-eicosatrienoate (ETA) and 5,8,11,14,17-eicosapentaenoate (EPA), exhibited high affinity incorporation into total phospholipids, whereas other fatty acids, including docosahexaenoate and monohydroxy eicosatetraenoates, showed low affinity incorporation. The relative degree of incorporation of eicosanoid precursor fatty acids into phospholipid classes was phosphatidylcholine (PC) greater than phosphatidylethanolamine (PE) greater than phosphatidylinositol (PI) greater than phosphatidylserine (PS). The specific activity of [14C]arachidonic acid-labeled PI was two times higher than that of any other radiolabeled phospholipids. When competitive incorporation of eicosanoid precursor fatty acids into phospholipid classes was studied, they were found to be acylated into different phospholipid classes at different rates. Although eicosanoid precursor fatty acids were not preferentially incorporated into PC, arachidonic acid was preferentially incorporated into the other phospholipids and exhibited particular selectivity in comparison with the other eicosanoid precursor fatty acids for incorporation into PI. These results demonstrate that human umbilical vein endothelial cells possess selective incorporation mechanisms for specific fatty acids into various phospholipids via the deacylation-reacylation pathway.  相似文献   

19.
[3H]Palmitic acid and [14C]arachidonic acid were injected together into the cerebral ventricle of 4-month and 24-month-old rats. At different time intervals from the injection, the distribution of these fatty acids in the lipids from different brain areas was examined. The fatty acids were rapidly incorporated into the lipids through different mechanisms. The time-specific activity relationship indicate that the utilization of the fatty acid differs according to the different areas and aging decreases the utilization of both the fatty acids. The decline of arachidonic acid incorporation into phospholipids is particularly evident, indicating that aging affects mainly the utilization of polyunsaturated fatty acids.  相似文献   

20.
1. Ten bacteria utilizing [2-14C]ethanol-2-amine as the sole or major source of nitrogen for growth on glycerol + salts medium incorporated radioactivity into a variety of bacterial substances. A high proportion was commonly found in lipid fractions, particularly in the case of Erwinia carotovora. 2. Detailed studies of [14C]ethanolamine incorporation into lipids by five bacteria, including E. carotovora, showed that all detectable lipids were labelled. Even where phosphatidylethanolamine was the major lipid labelled, radioactivity was predominantly in the fatty acid rather than the base moiety. The labelled fatty acids were identified in each case. 3. The addition of acetate to growth media decreased the incorporation of radioactivity from ethanolamine into both fatty acid and phosphatidyl-base fragments of lipids from all the bacteria except Mycobacterium smegmatis. Experiments with [3H]ethanolamine and [14C]acetate confirmed that unlabelled acetate decreased the incorporation of both radioactive isotopes into lipids, except in the case of M. smegmatis. 4. Enzyme studies suggested one of two metabolic routes between ethanolamine and acetyl-CoA for each of four bacteria. A role for ethanolamine O-phosphate was not obligatory for the incorporation of [14C]ethanolamine into phospholipids, but correlated with CoA-independent aldehyde dehydrogenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号