首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl2), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl2 disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior–posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl2 sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl2 sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.  相似文献   

2.
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl?), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl? disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl? sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl? sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.  相似文献   

3.
SUMMARY Hemichordates were traditionally allied to the chordates, but recent molecular analyses have suggested that hemichordates are a sister group to the echinoderms, a relationship that has important consequences for the interpretation of the evolution of deuterostome body plans. However, the molecular phylogenetic analyses to date have not provided robust support for the hemichordate + echinoderm clade. We use a maximum likelihood framework, including the parametric bootstrap, to reanalyze DNA data from complete mitochondrial genomes and nuclear 18S rRNA. This approach provides the first statistically significant support for the hemichordate + echinoderm clade from molecular data. This grouping implies that the ancestral deuterostome had features that included an adult with a pharynx and a dorsal nerve cord and an indirectly developing dipleurula-like larva.  相似文献   

4.
Swalla BJ 《Heredity》2006,97(3):235-243
Deuterostome animals exhibit widely divergent body plans. Echinoderms have either radial or bilateral symmetry, hemichordates include bilateral enteropneust worms and colonial pterobranchs, and chordates possess a defined dorsal-ventral axis imposed on their anterior-posterior axis. Tunicates are chordates only as larvae, following metamorphosis the adults acquire a body plan unique for the deuterostomes. This paper examines larval and adult body plans in the deuterostomes and discusses two distinct ways of evolving divergent body plans. First, echinoderms and hemichordates have similar feeding larvae, but build a new adult body within or around their larvae. In hemichordates and many direct-developing echinoderms, the adult is built onto the larva, with the larval axes becoming the adult axes and the larval mouth becoming the adult mouth. In contrast, indirect-developing echinoderms undergo radical metamorphosis where adult axes are not the same as larval axes. A second way of evolving a divergent body plan is to become colonial, as seen in hemichordates and tunicates. Early embryonic development and gastrulation are similar in all deuterostomes, but, in chordates, the anterior-posterior axis is established at right angles to the animal-vegetal axis, in contrast to hemichordates and indirect-developing echinoderms. Hox gene sequences and anterior-posterior expression patterns illuminate deuterostome phylogenetic relationships and the evolution of unique adult body plans within monophyletic groups. Many genes that are considered vertebrate 'mesodermal' genes, such as nodal and brachyury T, are likely to ancestrally have been involved in the formation of the mouth and anus, and later were evolutionarily co-opted into mesoderm during vertebrate development.  相似文献   

5.
SUMMARY To examine the evolutionary origin of the chordate nervous system, an outgroup comparison with hemichordates is needed. When the nervous systems of chordates and hemichordates are compared, two possibilities have been proposed, one of which is that the chordate nervous system has evolved from the nervous system of hemichordate‐like larva and the other that it is comparable to the adult nervous system of hemichordates. To address this issue, we investigated the entire developmental process of the nervous system in the acorn worm Balanoglossus simodensis. In tornaria larvae, the nervous system developed along the longitudinal ciliary band and the telotroch, but no neurons were observed in the ventral band or the perianal ciliary ring throughout the developmental stages. The adult nervous system began to develop at the dorsal midline at the Krohn stage, considerably earlier than metamorphosis. During metamorphosis, the larval nervous system was not incorporated into the adult nervous system. These observations strongly suggest that the hemichordate larval nervous system contributes little to the newly formed adult nervous system.  相似文献   

6.
The causes and effects of ontogenetic torsion in gastropods have been debated intensely for more than a century (1-19). Occurring rapidly and very early in development, torsion figures prominently in shaping both the larval and adult body plans. We show that mechanical explanations of the ontogenetic event that invoke contraction of larval retractor muscles are inadequate to explain the observed consequences in some gastropods. The classic mechanical explanation of Crofts (4, 5) and subsequent refinements of her explanation have been based on species with rigid larval shell properties (18, 19) that cannot be extrapolated to all gastropods. We present visual evidence of the lack of rigidity of the uncalcified larval shell in a basal trochid gastropod, Margarites pupillus (Gould), and provide photographic confirmation of our prediction that larval retractor muscle contraction is insufficient to produce more than local deformation or dimpling at the site of muscle insertion. These findings do not refute muscular contraction as a primary cause of ontogenetic torsion in gastropods that calcify their larval shells prior to the onset of torsion, nor do they refute the monophyly of torsion. They do, however, suggest that torsion may be a loosely constrained developmental process with multiple pathways to the more constrained end result (20, 21).  相似文献   

7.
There is a classic controversy in zoology over whether the common ancestor of living bilaterian phyla was a benthic animal with a bilaterian body plan, or was a pelagic larva-like animal similar to what we see today in the primary larvae of indirect-developing bilaterians. We examine the current larva-like adult hypothesis, and present an alternate model for the evolution of complex life histories by intercalation of larval features into the ontogeny of an ancestral direct-developing bilaterian. This gradual accumulation of larval features results in a developmental regulatory program that produces a larva distinct in body plan from the adult. The evolution of a rapid and complete metamorphosis is made possible by the convergent evolution of set aside cells in the final stages of the emergence of indirect developing larval forms. Although convergences abound either hypothesis for the evolution of developmental pathways and life histories, the bilaterian first hypothesis is consistent with all stages of evolution of a complex life history being selectively advantageous, with the rapid evolution of larval forms, and with the frequent co-option of genes from the adult phase of the life cycle prevalent in the evolution of embryos and larvae.  相似文献   

8.
To investigate the bases for evolutionary changes in developmental mode, we fertilized eggs of a direct-developing sea urchin, Heliocidaris erythrogramma, with sperm from a closely related species, H. tuberculata, that undergoes indirect development via a feeding larva. The resulting hybrids completed development to form juvenile adult sea urchins. Hybrids exhibited restoration of feeding larval structures and paternal gene expression that have been lost in the evolution of the direct-developing maternal species. However, the developmental outcome of the hybrids was not a simple reversion to the paternal pluteus larval form. An unexpected result was that the ontogeny of the hybrids was distinct from either parental species. Early hybrid larvae exhibited a novel morphology similar to that of the dipleurula-type larva typical of other classes of echinoderms and considered to represent the ancestral echinoderm larval form. In the hybrid developmental program, therefore, both recent and ancient ancestral features were restored. That is, the hybrids exhibited features of the pluteus larval form that is present in both the paternal species and in the immediate common ancestor of the two species, but they also exhibited general developmental features of very distantly related echinoderms. Thus in the hybrids, the interaction of two genomes that normally encode two disparate developmental modes produces a novel but harmonious ontongeny.  相似文献   

9.
The embryonic and larval development of the Polypteriformes, the presumed sister group of all other living actinopterygians, is poorly known. The main reason is the scarcity of successful breedings in captivity and therefore the lack of developmental series of any one polypterid species. A series of five successful breedings of P. senegalusnow makes it possible to define developmental stages of this species based on numerous closely timed specimens. The staging given here focuses on external embryonic and larval features: epidermal surface structures documented by SEM, colour pattern, development of fins and squamation, larval feeding and locomotory behaviour. The development of P. senegalusis characterized by a long free embryonic phase. Suction feeding is performed from the beginning of larval life (apterolarval phase). The pectoral fins start to become employed for slow locomotion and as supportive structures at around the same time. Olfactorily guided prey capture, however, is observed later in the pterolarval phase. Quantitative kinematic data also demonstrate a change in the mode of undulatory locomotion during this phase. Sustained axial undulation becomes confined to the posterior abdominal and caudal region of the body. At about the same time the paraxial high frequency undulation of the pectoral fin fold is replaced by the characteristic propeller-like movement of much greater amplitude and wavelength. Surfacing for aerial breathing is not seen before a marked change in colouration has taken place at the beginning of the juvenile period. The external gills slowly become reduced during this period. The definitions of larval and juvenile stages given here may advance understanding of developmental processes in the ontogeny of these primitive actinopterygians, and may serve as a tool for comparison with the ontogeny of Tetrapoda and Dipnoi, as well as to that of some “primitive” groups of Actinopterygii. Judging from its distribution among extant taxa, embryonic and larval ciliation is a character that most probably belongs to the grundplan? of Osteognathostomata. Phylogenetic evaluation is not so clear for the two other prominent embryonic and larval specializations found in Polypterus: upper labial attachment glands and opercular external gills. © 1997 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd.  相似文献   

10.
In this study we investigated the developmental basis of adult phenotypes in a non-model organism, a polymorphic damselfly (Ischnura elegans) with three female colour morphs. This polymorphic species presents an ideal opportunity to study intraspecific variation in growth trajectories, morphological variation in size and shape during the course of ontogeny, and to relate these juvenile differences to the phenotypic differences of the discrete adult phenotypes; the two sexes and the three female morphs. We raised larvae of different families in individual enclosures in the laboratory, and traced morphological changes during the course of ontogeny. We used principal components analysis to examine the effects of Sex, Maternal morph, and Own morph on body size and body shape. We also investigated the larval fitness consequences of variation in size and shape by relating these factors to emergence success. Females grew faster than males and were larger as adults, and there was sexual dimorphism in body shape in both larval and adult stages. There were also significant effects of both maternal morph and own morph on growth rate and body shape in the larval stage. There were significant differences in body shape, but not body size, between the adult female morphs, indicating phenotypic integration between colour, melanin patterning, and body shape. Individuals that emerged successfully grew faster and had different body shape in the larval stage, indicating internal (non-ecological) selection on larval morphology. Overall, morphological differences between individuals at the larval stage carried over to the adult stage. Thus, selection in the larval stage can potentially result in correlated responses in adult phenotypes and vice versa.  相似文献   

11.
The active evolutionary lives of echinoderm larvae   总被引:4,自引:0,他引:4  
Raff RA  Byrne M 《Heredity》2006,97(3):244-252
Echinoderms represent a researchable subset of a dynamic larval evolutionary cosmos. Evolution of echinoderm larvae has taken place over widely varying time scales from the origins of larvae of living classes in the early Palaeozoic, approximately 500 million years ago, to recent, rapid and large-scale changes that have occurred within living genera within a span of less than a million years to a few million years. It is these recent evolutionary events that offer a window into processes of larval evolution operating at a micro-evolutionary level of evolution of discrete developmental mechanisms. We review the evolution of the diverse larval forms of living echinoderms to outline the origins of echinoderm larval forms, their diversity among living echinoderms, molecular clocks and rates of larval evolution, and finally current studies on the roles of developmental regulatory mechanisms in the rapid and radical evolutionary changes observed between closely related congeneric species.  相似文献   

12.
Of the major deuterostome groups, the echinoderms with their multiple forms and complex development are arguably the most mysterious. Although larval echinoderms are bilaterally symmetric, the adult body seems to abandon the larval body plan and to develop independently a new structure with different symmetries. The prevalent pentamer structure, the asymmetry of Lovén's rule and the variable location of the periproct and madrepore present enormous difficulties in homologizing structures across the major clades, despite the excellent fossil record. This irregularity in body forms seems to place echinoderms outside the other deuterostomes. Here I propose that the predominant five-ray structure is derived from a hexamer structure that is grounded directly in the structure of the bilaterally symmetric larva. This hypothesis implies that the adult echinoderm body can be derived directly from the larval bilateral symmetry and thus firmly ranks even the adult echinoderms among the bilaterians. In order to test the hypothesis rigorously, a model is developed in which one ray is missing between rays IV-V (Lovén's schema) or rays C-D (Carpenter's schema). The model is used to make predictions, which are tested and verified for the process of metamorphosis and for the morphology of recent and fossil forms. The theory provides fundamental insight into the M-plane and the Ubisch', Lovén's, and Carpenter's planes and generalizes them for all echinoderms. The theory also makes robust predictions about the evolution of the pentamer structure and its developmental basis.  相似文献   

13.
In free-spawning marine invertebrates, larval development typically proceeds by one of two modes: planktotrophy (obligate larval feeding) from small eggs or lecithotrophy (obligate non-feeding) from relatively large eggs. In a rare third developmental mode, facultative planktotrophy, larvae can feed, but do not require particulate food to complete metamorphosis. Facultative planktotrophy is thought to be an intermediate condition that results from an evolutionary increase in energy content in the small eggs of a planktotrophic ancestor. We tested whether an experimental reduction in egg size is sufficient to restore obligate planktotrophy from facultative planktotrophy and whether the two sources of larval nutrition (feeding and energy in the egg) differentially influence larval survival and juvenile quality. We predicted, based on its large egg size, that a reduction in egg size in the echinoid echinoderm Clypeaster rosaceus would affect juvenile size but not time to metamorphosis. We reduced the effective size of whole (W) zygotes by separating blastomeres at the two- or four-cell stages to create half- (H) or quarter-size (Q) “zygotes” and reared larvae to metamorphosis, both with and without particulate food. Larvae metamorphosed at approximately the same time regardless of food or egg size treatment. In contrast, juveniles that developed from W zygotes were significantly larger, had higher organic content and had longer and more numerous spines than juveniles from H or Q zygotes. Larvae from W, H and Q zygotes were able to reach metamorphosis without feeding, suggesting that the evolution of facultative planktotrophy in C. rosaceus was accompanied by more than a simple increase in egg size. In addition, our results suggest that resources lost by halving egg size have a larger effect on larval survival and juvenile quality than those lost by withholding particulate food.  相似文献   

14.
SUMMARY Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister‐phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect‐developing representative of the enteropneust hemichordates, Pty‐ chodera flava. Single blastomeres were iontophoretically labeled with DiI at the 2‐ through 16‐cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct‐developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect‐developing echinoids. The 16‐celled embryo contains eight animal “mesomeres,” four slightly larger “macromeres,” and four somewhat smaller vegetal “micromeres.” The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct‐developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two‐ or the four‐cell stage are capable of forming normal‐appearing, miniature tornaria larvae. These findings indicate that the fates of these cells and embryonic dorsoventral axial properties are not committed at these early stages of development. Comparisons with the developmental programs of other deuterostome phyla allow one to speculate on the conservation of some key developmental events/mechanisms and propose basal character states shared by the ancestor of echinoderms and hemichordates.  相似文献   

15.
Glyptotendipes paripes larvae were reared in wells of tissue culture plates, in groups of 2, 4, 8, 16, and 32 (representing densities of about 1,300, 2,600, 5,200, 10,400, and 20,800 larvae per m2, respectively). Larval groups were supplied with one of two concentrations (low or high) of food and larvae were individually observed to evaluate the effects of density on mortality, growth, development, behavior, and adult body size. Increased larval densities resulted in higher mortality, as well as slower larval growth and development. The distribution of developmental time became flatter at higher density, with a wider range of values, or even became bimodal. This was a consequence of the most rapidly developing individuals at higher densities emerging as adults sooner than the fastest developing individuals at lower densities, although overall mean developmental time was longer at higher densities. At higher densities, growth and development of smaller larvae were slowed, based on the relative difference in body length between competitors. When larger competitors emerged as adults or died, the growth of smaller larvae may have accelerated, resulting in increased variability of developmental times. The effect of larval density on adult body size was complex, with the largest body size found at the lowest density and a second peak of adult size at high-middle densities, with smaller adult body sizes found at low-middle, and high densities. Similarly, as with developmental time, the range of body size increased with increasing density. Examined food concentrations had no effect on larval mortality, but significantly affected developmental time, growth rate, and adult body size. At higher densities, larvae spent more time gathering food and were engaged in aggressive or antagonistic behaviors.  相似文献   

16.
Spatial expression of Hox cluster genes in the ontogeny of a sea urchin   总被引:7,自引:0,他引:7  
The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.  相似文献   

17.
The role of paedomorphosis as a particular case of heterochrony in the origin and evolution of the class Holothuroidea is analyzed. It is shown that holothurians are characterized by the presence of some paedomorphic characters (reduced skeleton, absence of an axial complex in the shape of a morphologically integrated structure, single gonad with one gonopore). In many members of the subclass Holothuriacea, sclerites of the body wall are arranged in two layers. Sclerites of the deeper layer develop as a perforated plate and correspond to the skeletal elements forming in other echinoderms the body skeleton, for example, the test of sea urchins. Sclerites of the superficial layer frequently look like various tables, develop like spines of other echinoderm classes, in particular, juvenile tetraradiate spines of sea urchins, and correspond to spines of other classes of Echinodermata. Ontogenetic changes at the stage of five first tentacles resulted in interruption at an early stage of the development with the catastrophic metamorphosis, which is typical for other Eleutherozoa. The ontogeny of holothurians acquired the evolutive (gradual) character; the adult body began to develop on the basis of the larval body and larval tissues were partially included in the body of adult holothurians. As a result, the place and developmental pattern of the radial complex of organs changed and heterochrony in the development of characters concerned with different coordination chains intensified; therefore, the modern body plan of holothurians was formed. The processes of paedomorphosis and heterochrony played an important role not only in the origin and formation of the class Holothuroidea, but also during its evolution. Paedomorphic processes became rather important in the evolution of the order Synaptida. Paedomorphic features are particularly prominent in the structure of small interstitial forms. In some holothurians, the paedomorphosis resulted in the change in relationships between symmetry planes. The bilateral plane of symmetry of these holothurians coincide with the plane of symmetry 2–1–2, which is positioned in the majority of holothurians at about 72° to the bilateral plane. Independently, but frequently in parallel, the intestinal loop disappeared, so that the gut became straight and suspended on mediodorsal mesentery almost throughout its extent. The combination of these processes in holothurians of the order Synaptida resulted in the formation of almost complete pentaradially bilateral symmetry.  相似文献   

18.
Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star), but in a completely different developmental context (the animal-vegetal axis). This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor.  相似文献   

19.
Zamora S  Rahman IA  Smith AB 《PloS one》2012,7(6):e38296
Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta. This provides a root for all echinoderms and confirms that the earliest members were deposit feeders not suspension feeders.  相似文献   

20.
In the marine environment a wide range of invertebrates have a pelagobenthic lifecycle that includes planktonic larval and benthic adult phases. Transition between these morphologically and ecologically distinct phases typically occurs when the developmentally competent larva comes into contact with a species-specific environmental cue. This cue acts as a morphogenetic signal that induces the completion of the postlarval/juvenile/adult developmental program at metamorphosis. The development of competence often occurs hours to days after the larva is morphologically mature. In the non-feeding--lecithotrophic--larvae of the ascidian Herdmania curvata and the gastropod mollusc Haliotis asinina, gene expression patterns in pre-competent and competent stages are markedly different, reflecting the different developmental states of these larval stages. For example, the expression of Hemps, an EGF-like signalling peptide required for the induction of Herdmania metamorphosis, increases in competent larvae. Induction of settlement and metamorphosis results in further changes in developmental gene expression, which apparently is necessary for the complete transformation of the larval body plan into the adult form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号