首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this issue of Developmental Cell, a novel mechanism for the initiation of germ cell migration in the mouse has been identified, based upon differential expression of interferon-inducible transmembrane proteins in the gastrula (Tanaka et al., 2005). Germ cells are displaced by a repulsion mechanism from the posterior mesoderm into the endoderm.  相似文献   

2.
Primordial germ cells (PGCs) in mice have been recognized histologically as alkaline phosphatase (AP) activity-positive cells at 7.2 days post coitum (dpc) in the extra-embryonic mesoderm. However, mechanisms regulating PGC formation are unknown, and an appropriate in vitro system to study the mechanisms has not been established. Therefore, we have developed a primary culture of explanted embryos at pre- and early-streak stages, and have studied roles of cell and/or tissue interactions in PGC formation. The emergence of PGCs from 5.5 dpc epiblasts was observed only when they were co-cultured with extra-embryonic ectoderm, which may induce the conditions required for PGC formation within epiblasts. From 6.0 dpc onwards, PGCs emerged from whole epiblasts as did a fragment of proximal epiblast that corresponds to the area containing presumptive PGC precursors without neighboring extra-embryonic ectoderm and visceral endoderm. Dissociated epiblasts at these stages, however, did not give rise to PGCs, indicating that interactions among a cluster of a specific number of proximal epiblast cells is needed for PGC differentiation. In contrast, we observed that dissociated epiblast cells from a 6.5-b (6.5+15-16 hours) to 6.75 dpc embryo that had undergone gastrulation gave rise to PGCs. Our results demonstrate that stage-dependent tissue and cell interactions play key roles in PGC determination.  相似文献   

3.
原始生殖细胞特化在精子和卵子生成过程中发挥着重要的作用,而PR结构域蛋白质(PR-domain protein,PRDM)家族部分成员参与了该过程。PRDM1可抑制体细胞程序化过程中基因的表达,而PRDM1和PRDM14共同参与了潜在的全能性细胞的重新获取和基因组范围内表观遗传学重编程。这三个过程都是原始生殖细胞特化所必需的。此外,原始生殖细胞特化还需要一些其他因素如骨形态发生蛋白4(bone morphogenetic protein4,Bmp4)和RNA结合蛋白Lin28,这些因素通过影响PRDM发挥生理作用。对原始生殖细胞特化的理解有利于生殖细胞发育和相关问题的研究。  相似文献   

4.
Regulation of primordial germ cell development in the mouse   总被引:12,自引:0,他引:12  
Primordial germ cells (PGCs) are the founders of the gametes. They arise at the earliest stages of embryonic development and migrate to the gonadal ridges, where they differentiate into oogonia/oocytes in the ovary, and prospermatogonia in the testis. The present article is a review of the main studies undertaken by the author with the aim of clarifying the mechanisms underlying the development of primordial germ cells. Methods for the isolation and purification of migratory and post-migratory mouse PGCs devised in the author's laboratory are first briefly reviewed. Such methods, together with the primary culture of PGCs onto suitable cell feeder layers, have allowed the analysis of important aspects of the control of their development, concerning in particular survival, proliferation and migration of mouse PGCs. Compounds and growth factors affecting PGC numbers in culture have been identified. These include survival anti-apoptotic factors (SCF, LIF) and positive regulators of proliferation (cAMP, PACAPs, RA). Evidence has been provided that the motility of migrating PGCs relies on integrated signals from extracellular matrix molecules and the surrounding somatic cells. Moreover, homotypic PGC-PGC interaction has been evidenced that might play a role in PGC migration and in regulating their development. Several molecules (i.e. integrins, specific types of oligosaccharides, E-cadherin, the tyrosine kinase receptor c-kit) have been found to be expressed on the surface of PGCs and to mediate adhesive interactions of PGCs with the extracellular matrix, somatic cells and neighbouring PGCs.  相似文献   

5.
Information obtained mainly from in vitro culture studies and genetic analysis of mouse mutants White spotting and Steel indicate a pivotal role of growth factors in the development of mouse primordial germ cells (PGCs). While stem cell factor (SCF) and TGFβ1 seem to have a role in PGC migration (as an adhesion factor and a chemoattractant, respectively), the former is certainly required for PGC survival in vitro and probably in vivo as well. Recent findings suggest that the mechanism by which SCF supports PGC survival is by preventing PGC apoptosis. A similar action appears to be exerted by leukemia inhibitory factor (LIF), a further growth factor influencing PGC growth in culture.PGC proliferation seems to be mainly induced by cAMP dependent mechanisms, but futther investigations are needed to clarify the interrelationships among the different molecular pathways activated by SCF, LIF, cAMP and other putative PGC growth factors (i.e. bFGF). Stimulation of long-term proliferation of PGCs, leading to derivation of ES-like cells (embryonal germ cells) obtained by using a combination of growth factors (bFGF, SCF and LIF), opens new intriguing perspectives for such studies and transgenic technology.  相似文献   

6.
In this study we show that mouse primordial germ cells and fetal germ cells at certain stages of differentiation express E-cadherin and alpha and beta catenins. Moreover, we demonstrate that the formation of germ cell aggregates that rapidly occurs when monodispersed germ cell populations are released from embryonic gonads in culture is E-cadherin mediated, developmentally regulated, and dependent on the sex of the germ cells. Immunoblotting analyses indicate that the lower ability to form aggregates of primordial germ cells in comparison to fetal germ cells is not due to gross changes in E-cadherin expression, altered association with beta catenin, or changes in beta catenin phosphorylation. Investigating possible functions of E-cadherin-mediated adhesion in primordial germ cell development, we found that E-cadherin-mediated adhesion may stimulate the motility of primordial germ cells. Moreover, treatment of primordial germ cells cultured on STO cell monolayers with an anti-E-cadherin antibody caused a significant decrease in their number and markedly reduced their ability to form colonies in vitro. The same in vitro treatment of explanted undifferentiated gonadal ridges cultured for 4 days results in decreased numbers and altered localization of the germ cell inside the gonads. Taken together these results suggest that E-cadherin plays an important role in primordial germ cell migration and homing and may act as a modulator of primordial germ cell development.  相似文献   

7.
Sonic Hedgehog (Shh) signaling plays a critical role during dorsoventral (DV) patterning of the developing neural tube by modulating the expression of neural patterning genes. Overlapping activator functions of Gli2 and Gli3 have been shown to be required for motoneuron development and correct neural patterning in the ventral spinal cord. However, the role of Gli2 and Gli3 in ventral hindbrain development is unclear. In this paper, we have examined DV patterning of the hindbrain of Shh(-/-), Gli2(-/-) and Gli3(-/-) embryos, and found that the respective role of Gli2 and Gli3 is not only different between the hindbrain and spinal cord, but also at distinct rostrocaudal levels of the hindbrain. Remarkably, the anterior hindbrain of Gli2(-/-) embryos displays ventral patterning defects as severe as those observed in Shh(-/-) embryos suggesting that, unlike in the spinal cord and posterior hindbrain, Gli3 cannot compensate for the loss of Gli2 activator function in Shh-dependent ventral patterning of the anterior hindbrain. Loss of Gli3 also results in a distinct patterning defect in the anterior hindbrain, including dorsal expansion of Nkx6.1 expression. Furthermore, we demonstrate that ventral patterning of rhombomere 4 is less affected by loss of Gli2 function revealing a different requirement for Gli proteins in this rhombomere. Taken together, these observations indicate that Gli2 and Gli3 perform rhombomere-specific function during DV patterning of the hindbrain.  相似文献   

8.
We have identified Talpid3/KIAA0586 as a component of a CP110-containing protein complex important for centrosome and cilia function. Talpid3 assembles a ring-like structure at the extreme distal end of centrioles. Ablation of Talpid3 resulted in an aberrant distribution of centriolar satellites involved in protein trafficking to centrosomes as well as cilia assembly defects, reminiscent of loss of Cep290, another CP110-associated protein. Talpid3 depletion also led to mislocalization of Rab8a, a small GTPase thought to be essential for ciliary vesicle formation. Expression of activated Rab8a suppressed cilia assembly defects provoked by Talpid3 depletion, suggesting that Talpid3 affects cilia formation through Rab8a recruitment and/or activation. Remarkably, ultrastructural analyses showed that Talpid3 is required for centriolar satellite dispersal, which precedes the formation of mature ciliary vesicles, a process requiring Cep290. These studies suggest that Talpid3 and Cep290 play overlapping and distinct roles in ciliary vesicle formation through regulation of centriolar satellite accretion and Rab8a.  相似文献   

9.
10.
11.
Many bacterial pathogens reorganize the host actin cytoskeleton during the course of infection, including enterohemorrhagic Escherichia coli (EHEC), which utilizes the effector protein EspF(U) to assemble actin filaments within plasma membrane protrusions called pedestals. EspF(U) activates N-WASP, a host actin nucleation-promoting factor that is normally auto-inhibited and found in a complex with the actin-binding protein WIP. Under native conditions, this N-WASP/WIP complex is activated by the small GTPase Cdc42 in concert with several different SH3 (Src-homology-3) domain-containing proteins. In the current study, we tested whether SH3 domains from the F-BAR (FCH-Bin-Amphiphysin-Rvs) subfamily of membrane-deforming proteins are involved in actin pedestal formation. We found that three F-BAR proteins: CIP4, FBP17, and TOCA1 (transducer of Cdc42-dependent actin assembly), play different roles during actin pedestal biogenesis. Whereas CIP4 and FBP17 inhibited actin pedestal assembly, TOCA1 stimulated this process. TOCA1 was recruited to pedestals by its SH3 domain, which bound directly to proline-rich sequences within EspF(U). Moreover, EspF(U) and TOCA1 activated the N-WASP/WIP complex in an additive fashion in vitro, suggesting that TOCA1 can augment actin assembly within pedestals. These results reveal that EspF(U) acts as a scaffold to recruit multiple actin assembly factors whose functions are normally regulated by Cdc42.  相似文献   

12.
NAADP participates in the response of starfish oocytes to sperm by triggering the fertilization potential (FP) through the activation of a Ca2+ current which depolarizes the membrane to the threshold of activation of the voltage-gated Ca2+ channels. The aim of this study was to investigate whether this Ca2+ influx is linked to the onset of the concomitant InsP3-mediated Ca2+ wave by simultaneously employing Ca2+ imaging and single-electrode intracellular recording techniques. In control oocytes, the sperm-induced membrane depolarization always preceded by a few seconds the onset of the Ca2+ wave. Strikingly, the self-desensitization of NAADP receptors either abolished the Ca2+ response or resulted in abnormal oocyte activation, i.e., the membrane depolarization followed the Ca2+ wave and the oocyte was polyspermic. The inhibition of InsP3 signaling only impaired the propagation of the Ca2+ wave and shortened the FP. The duration of FP was also reduced in low-Na+ sea water. Finally, uncaged InsP3 produced a Ca2+ increase, which depolarized the membrane upon the activation of a Ca2+-sensitive cation current. These results support the hypothesis that Ca2+ entry during the NAADP-triggered FP is required for the onset of the Ca2+ wave at fertilization. The InsP3-mediated Ca2+ wave, in turn, may interact with the NAADP-evoked depolarization by activating a Ca2+-dependent Na+ entry.  相似文献   

13.
The stage-specific embryonic antigen 1 (SSEA-1) is a cell marker of primordial germ cells (PGCs). In the present study, it is shown that isolation and purification of PGCs from 8.5-11.5 days post coitum (dpc) embryos can be achieved by a immunomagnetic cell sorting method using SSEA-1 antibody-conjugated magnetic beads, and then the sorted PGCs can be used for long-term culture under strict culture conditions to derive embryonic germ (EG) cell lines. Five independent EG cell lines with male karyotypes have been established. They show both a strong alkaline phosphatase activity and expression of the SSEA-1 antigen, and are karyotypically stable with a modal number of chromosomes in more than 80% of the cells. One of the EG cell lines from 8.5-dpc embryos produced chimeras after injections of the cells into 8-cell host embryos. These procedures could provide a useful and simple method for isolation of undifferentiated cells from a heterogeneous cell population and for establishment of embryo-derived stem cell lines.  相似文献   

14.
Two types of syntaxin 1 isoforms, HPC‐1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are thought to have similar functions in exocytosis of synaptic vesicles. STX1A?/? mice which we generated previously develop normally, possibly because of compensation by STX1B. We produced STX1B?/? mice using targeted gene disruption and investigated their phenotypes. STX1B?/? mice were born alive, but died before postnatal day 14, unlike STX1A?/? mice. Morphologically, brain development in STX1B?/? mice was impaired. In hippocampal neuronal culture, the cell viability of STX1B?/? neurons was lower than that of WT or STX1A?/? neurons after 9 days. Interestingly, STX1B?/? neurons survived on WT or STX1A?/? glial feeder layers as well as WT neurons. However, STX1B?/? glial feeder layers were less effective at promoting survival of STX1B?/? neurons. Conditioned medium from WT or STX1A?/? glial cells had a similar effect on survival, but that from STX1B?/? did not promote survival. Furthermore, brain‐derived neurotrophic factor (BDNF) or neurotrophin‐3 supported survival of STX1B?/? neurons. BDNF localization in STX1B?/? glial cells was disrupted, and BDNF secretion from STX1B?/? glial cells was impaired. These results suggest that STX1A and STX1B may play distinct roles in supporting neuronal survival by glia.

  相似文献   


15.
A single recessive gene, ter (teratoma), causes germ cell deficiency and a high incidence of congenital testicular teratomas in the 129/Sv-ter strain of the mouse. Linkage analyses between the ter gene and 36 marker genes of 19 chromosomes were performed with matings between the C57BL/6J-ter congenic strain and four inbred strains. Results showed that the ter gene was linked to D18Mit9, D18Mit14, and D18Mit17 on Chromosome (Chr) 18. Gene order estimated on the basis of recombination distance (in centimorgans) was [centromere-D18Mit14-5.1 (cM)-ter-0 (cM)-D18Mit17-23.8 (cM)-D18Mit9]. D18Mit17 is the microsatellite DNA of the Grl-1 (glucocorticoid receptor-1) locus. We conclude that the ter gene is closely linked to Grl-1 on Chr 18 and is a new mutation involving the developmental modification of primordial germ cells in mice.Deceased  相似文献   

16.
17.
《Developmental cell》2022,57(12):1482-1495.e5
  1. Download : Download high-res image (119KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1β activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.  相似文献   

20.
Wnt signaling pathways in vertebrates use the phosphoprotein Dishevelled (Dvl). The cellular responses to Wnt signaling may in part be modulated by Dvl-associated proteins, including Dapper (Dpr). We have cloned and characterized the zebrafish Dpr paralogs Dpr1 and Dpr2. Loss-of-function studies reveal that endogenous Dpr1 but not Dpr2 is required to enhance Wnt/beta-catenin activity in zebrafish embryos that are hypomorphic for Wnt8. Conversely, Dpr2 but not Dpr1 is required for normal convergence extension movements in embryos that are hypomorphic for Stbm or Wnt11, supporting a functional interaction of Dpr2 with Wnt/Ca2+-PCP signaling. In gain-of-function experiments, Dpr1 but not Dpr2 induces Wnt/beta-catenin target genes. Dpr1 synergizes with zebrafish Dvl2, and with the Dvl-interacting kinases CK1epsilon, Par1 and CK2, in activating target genes. We conclude that two Dvl-associated paralogs, Dpr1 and Dpr2, participate in distinct Wnt-dependent developmental processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号