首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In all multicellular organisms, germ cells originating from a fertilized egg have the highly specialized role of transmitting genetic information to the next generation. In many animal species, the establishment of the germ cell lineage is regulated by the maternally inherited germplasm. In mammals, however, germline determination is not based on the unequal distribution of maternal determinants. In the processes of mammalian germ cell formation and subsequent differentiation, the molecular basis of the acquisition of germ cell status is not well understood. Since migrating primordial germ cells (PGCs) are lineage-restricted to the germline, they have already acquired a germ cell specific fate distinct from that of pluri/multi-potent stem cells. However, there have been no molecules known to be expressed in migrating PGCs but not in the inner cell mass of blastocysts. Such molecules should be involved in early germ cell development, and they should make good markers for following the process of PGC formation. To identify such molecules, we performed a subtracted cDNA screening with migrating PGCs and blastocysts in mice, and isolated 11 clones preferentially expressed in PGCs. Here, we report the identification of two genes with similarity to human interferon-induced transmembrane protein (Ifitm) genes, and expression patterns of these genes in forming and in differentiating PGCs. During germ cell formation, mouse Ifitm like (mil)-1 was expressed in putative PGC ancestors in embryos at 6.5-7.5 days post coitum. In migrating PGCs, mil-1 expression was continuously observed and mil-2 expression was first detected during germ cell differentiation.  相似文献   

2.
In all multicellular organisms, germ cells originating from a fertilized egg have the highly specialized role of transmitting genetic information to the next generation. In many animal species, the establishment of the germ cell lineage is regulated by the maternally inherited germplasm. In mammals, however, germline determination is not based on the unequal distribution of maternal determinants. In the processes of mammalian germ cell formation and subsequent differentiation, the molecular basis of the acquisition of germ cell status is not well understood. Since migrating primordial germ cells (PGCs) are lineage-restricted to the germline, they have already acquired a germ cell specific fate distinct from that of pluri/multi-potent stem cells. However, there have been no molecules known to be expressed in migrating PGCs but not in the inner cell mass of blastocysts. Such molecules should be involved in early germ cell development, and they should make good markers for following the process of PGC formation. To identify such molecules, we performed a subtracted cDNA screening with migrating PGCs and blastocysts in mice, and isolated 11 clones preferentially expressed in PGCs. Here, we report the identification of two genes with similarity to human interferon-induced transmembrane protein (Ifitm) genes, and expression patterns of these genes in forming and in differentiating PGCs. During germ cell formation, mouse Ifitm like (mil)-1 was expressed in putative PGC ancestors in embryos at 6.5-7.5 days post coitum. In migrating PGCs, mil-1 expression was continuously observed and mil-2 expression was first detected during germ cell differentiation.  相似文献   

3.
The family of interferon-inducible transmembrane proteins (Ifitm) consists of five highly sequence-related cell surface proteins, which are implicated in diverse cellular processes. Ifitm genes are conserved, widely expressed, and characteristically found in genomic clusters, such as the 67-kb Ifitm family locus on mouse chromosome 7. Recently, Ifitm1 and Ifitm3 have been suggested to mediate migration of early primordial germ cells (PGCs), a process that is little understood. To investigate Ifitm function during germ cell development, we used targeted chromosome engineering to generate mutants which either lack the entire Ifitm locus or carry a disrupted Ifitm3 gene only. Here we show that the mutations have no detectable effects on development of the germ line or on the generation of live young. Hence, contrary to previous reports, Ifitm genes are not essential for PGC migration. The Ifitm family is a striking example of a conserved gene cluster which appears to be functionally redundant during development.  相似文献   

4.
Most bilaterians specify primordial germ cells (PGCs) during early embryogenesis using either inherited cytoplasmic germ line determinants (preformation) or induction of germ cell fate through signaling pathways (epigenesis). However, data from nonbilaterian animals suggest that ancestral metazoans may have specified germ cells very differently from most extant bilaterians. Cnidarians and sponges have been reported to generate germ cells continuously throughout reproductive life, but previous studies on members of these basal phyla have not examined embryonic germ cell origin. To try to define the embryonic origin of PGCs in the sea anemone Nematostella vectensis, we examined the expression of members of the vasa and nanos gene families, which are critical genes in bilaterian germ cell specification and development. We found that vasa and nanos family genes are expressed not only in presumptive PGCs late in embryonic development, but also in multiple somatic cell types during early embryogenesis. These results suggest one way in which preformation in germ cell development might have evolved from the ancestral epigenetic mechanism that was probably used by a metazoan ancestor.  相似文献   

5.
胚胎生殖细胞(embryonic germ cell,EGC)是由胎儿原始生殖细胞(primordial germ cell,PGC)经体外驯化培养获得的一种多潜能干细胞。研究猪PGC生物学特性对于建立猪EGC及了解猪生殖细胞发育机制具有重要意义。该研究以原代培养的猪PGC为对象,探讨了其生长行为特征及其重编程过程中多能性、生殖系标志基因的表达模式。结果显示,26 d胚胎生殖嵴分离的PGC呈碱性磷酸酶阳性,细胞体积及核质比较大;体外培养初期呈现出较强的增殖及迁移能力,培养第5 d细胞增殖达到平台期,此时克隆高表达Oct4、Sox2、Nanog、c-Myc、Klf4和Ifi tm3(P〈0.05),低表达Blimp1(P〈0.05),Nanos1和Stella的表达水平与猪胎儿成纤维细胞无差异;猪PGC形成的原代克隆已经具有多向分化潜能。  相似文献   

6.
7.
SUMMARY In bilaterian animals, germ cells are specified by the inductive/regulative mode or the predetermined (germ plasm) mode. Among tetrapods, mammals and urodeles use the inductive mode, whereas birds and anurans use the predetermined mode. From histological data it has been predicted that some reptiles including turtles use the inductive mode. Examining turtle oocytes, we find that Dazl RNA, Vasa RNA, and Vasa protein are not localized, suggesting that germ plasm is not present. In turtle embryos at somite stages, primordial germ cells (PGCs) expressing Dazl lie on a path from the lateral posterior extraembryonic endoderm through the gut to the gonad as previously described. In gastrulating embryos, cells expressing Dazl are found in the blastoporal plate and subsequently below the blastoporal plate, indicating that PGCs are generated at the equivalent of the early posterior primitive streak of mammals. Vasa RNA is expressed in somatic cells of gastrula to early somite stages, and Vasa RNA and protein are expressed in PGCs of later embryos. Taken together the evidence strongly suggests that turtles, and other reptiles (lacertoid lizards) with the same location of PGCs in embryos, use the inductive mode of germ cell specification. Phylogenetic analysis of the available evidence supports the following hypotheses: (1) the inductive mode is basal among reptiles, indicating that this mode was maintained as basal tetrapods evolved to amniotes, (2) the predetermined mode arose twice within reptiles, and (3) the induced mode may be used in several lepidosaurs whose PGCs are located in an unusual pattern distributed around the embryo.  相似文献   

8.
Primordial germ cells (PGCs) are embryonic germ cell precursors. Although the developmental potency of PGCs is restricted to the germ lineage, PGCs can acquire pluripotency, as verified by the in vitro establishment of embryonic germ (EG) cells and the in vivo production of testicular teratomas. PGC-specific inactivation of PTEN, which is a lipid phosphatase antagonizing phosphoinositide-3 kinase (PI3K), enhances both EG cell production and testicular teratoma formation. Here, we analyzed the effect of the serine/threonine kinase AKT, one of the major downstream effectors of PI3K, on the developmental potency of PGCs. We used transgenic mice that expressed an AKT-MER fusion protein, the kinase activity of which could be regulated by the ligand of modified estrogen receptor (MER), 4-hydroxytamoxifen. We found that hyperactivation of AKT signaling in PGCs at the proliferative phase dramatically augmented the efficiency of EG cell establishment. Furthermore, AKT signaling activation substituted to some extent for the effects of bFGF, an essential growth factor for EG cell establishment. By contrast, AKT activation had no effect on germ cells that were in mitotic arrest or that began meiosis at a later embryonic stage. In the transgenic PGCs, AKT activation induced phosphorylation of GSK3, which inhibits its kinase activity; enhanced the stability and nuclear localization of MDM2; and suppressed p53 phosphorylation, which is required for its activation. The p53 deficiency, but not GSK3 inhibition, recapitulated the effects of AKT hyperactivation on EG cell derivation, suggesting that p53 is one of the crucial downstream targets of the PI3K/AKT signal and that GSK3 is not.  相似文献   

9.
10.
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.  相似文献   

11.
12.
13.
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.  相似文献   

14.
Wang Z  Lin H 《Current biology : CB》2005,15(4):328-333
A fundamental yet essentially unexplored question in stem cell biology is whether the stem cell cycle has specific features. Three B-cyclins in Drosophila, Cyclins (Cyc) A, B, and B3, associate with CDK1 and play partially redundant roles in embryogenic mitosis . Here, we show that the division of Drosophila GSCs and their precursors, the primordial germ cells (PGCs), specifically requires CycB. CycB is ubiquitously expressed in both germline and somatic lineages. However, CycB mutation does not have obvious effect on somatic development but causes PGCs to severely under proliferate. Moreover, both female and male CycB mutant GSCs fail to be maintained properly. Removing Cyclin B specifically from female GSCs causes the same defect, confirming the direct and cell-autonomous function of Cyclin B for GSC division. In contrast, two other G2 cyclins, CycA and CycB3, are also expressed in PGCs and GSCs, but overexpressing CycA cannot rescue the CycB mutant defects. These results indicate that the requirement of CycB for PGC and GSC divisions unlikely reflects the insufficient level of G2 cyclins in the CycB mutant but is in favor of a distinct function of CycB in these cells. Our results indicate that stem cells may use specific cell cycle regulators for their division.  相似文献   

15.
Directional migration of primordial germ cells (PGCs) toward future gonads is a common feature in many animals. In zebrafish, mouse and chicken, SDF-1/CXCR4 chemokine signaling has been shown to have an important role in PGC migration. In Xenopus, SDF-1 is expressed in several regions in embryos including dorsal mesoderm, the target region that PGCs migrate to. CXCR4 is known to be expressed in PGCs. This relationship is consistent with that of more well-known animals. Here, we present experiments that examine whether chemokine signaling is involved in PGC migration of Xenopus. We investigate: (1) Whether injection of antisense morpholino oligos (MOs) for CXCR4 mRNA into vegetal blastomere containing the germ plasm or the precursor of PGCs disturbs the migration of PGCs? (2) Whether injection of exogenous CXCR4 mRNA together with MOs can restore the knockdown phenotype? (3) Whether the migratory behavior of PGCs is disturbed by the specific expression of mutant CXCR4 mRNA or SDF-1 mRNA in PGCs? We find that the knockdown of CXCR4 or the expression of mutant CXCR4 in PGCs leads to a decrease in the PGC number of the genital ridges, and that the ectopic expression of SDF-1 in PGCs leads to a decrease in the PGC number of the genital ridges and an increase in the ectopic PGC number. These results suggest that SDF-1/CXCR4 chemokine signaling is involved in the migration and survival or in the differentiation of PGCs in Xenopus.  相似文献   

16.
Primordial germ cells (PGCs) are undifferentiated germ cells in embryos. We previously found that some mouse PGCs develop into pluripotential cells (EG cells) when cultured on a feeder layer expressing the membrane bound form of Steel factor with culture medium containing leukemia inhibitory factor and basic fibroblast growth factor. To understand the mechanisms of the conversion of PGCs into EG cells, we attempted to identify PGC subpopulations that have the ability to develop into EG cells. Using flow cytometry, we fractionated PGCs by the expression of the cell surface antigen integrin α6, as well as by the detection of side‐population (SP) cells in which stem cells are enriched in various tissues. PGCs with negative or low integrin α6 expression and with SP cell phenotype showed higher potential to convert to EG cells. Negative or low integrin α6 expression in PGCs was also correlated with lower expression of Ddx4, which is specifically expressed in PGCs after embryonic day 10.5. The results indicate that the primitive PGC population showing the SP cell phenotype among undifferentiated PGCs has a higher ability of being converted into EG cells. Thus, conversion of PGCs into pluripotential stem cells may be regulated by being influenced by the natural status of individual PGCs as well as the reprogramming process after starting culture.  相似文献   

17.
18.

Background

Specification of primordial germ cells (PGCs) results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG) cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF.

Methodology and Principal Findings

Here we show that Trichostatin A (TSA), an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency.

Conclusions/Significance

We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state.  相似文献   

19.
In Drosophila, the posterior determinant nanos is required for embryonic patterning and for primordial germ cell (PGC) development. We have identified three genes in Caenorhabditis elegans that contain a putative zinc-binding domain similar to the one found in nanos, and show that two of these genes function during PGC development. Like Drosophila nanos, C. elegans nos-1 and nos-2 are not generally required for PGC fate specification, but instead regulate specific aspects of PGC development. nos-2 is expressed in PGCs around the time of gastrulation from a maternal RNA associated with P granules, and is required for the efficient incorporation of PGCs into the somatic gonad. nos-1 is expressed in PGCs after gastrulation, and is required redundantly with nos-2 to prevent PGCs from dividing in starved animals and to maintain germ cell viability during larval development. In the absence of nos-1 and nos-2, germ cells cease proliferation at the end of the second larval stage, and die in a manner that is partially dependent on the apoptosis gene ced-4. Our results also indicate that putative RNA-binding proteins related to Drosophila Pumilio are required for the same PGC processes as nos-1 and nos-2. These studies demonstrate that evolutionarily distant organisms utilize conserved factors to regulate early germ cell development and survival, and that these factors include members of the nanos and pumilio gene families.  相似文献   

20.
Primordial germ cells (PGCs) in Xenopus embryo are specified in the endodermal cell mass and migrate dorsally toward the future gonads. The role of the signal mediated by Notch and Suppressor of Hairless [Su(H)] was analyzed on the migrating PGCs at the tailbud stage. X‐Notch‐1 and X‐Delta‐1 are expressed in the migrating PGCs and surrounding endodermal cells, whereas X‐Delta‐2 and X‐Serrate‐1 are expressed preferentially in the PGCs. Suppression and constitutive activation of the Notch/Su(H) signaling in the whole endoderm region or selectively in the PGCs resulted in an increase in ectopic PGCs located in lateral or ventral regions. Knocking down of the Notch ligands by morpholino oligonucleotides revealed that X‐Delta‐2 was indispensable for the correct PGC migration. The ectopic PGCs seemed to have lost their motility in the Notch/Su(H) signal‐manipulated embryos. Our results suggest that a cell‐to‐cell interaction via the Notch/Su(H) pathway has a significant role in the PGC migration by regulating cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号