首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
An extension of the Kalman filter algorithm to the multi-channel case is presented and its application as a segmenting procedure in the analysis of the epileptic EEG is discussed. An analytical example of structural analysis, using the segments extracted by the proposed filter, is presented for a particular set of 4-channel EEG recordings. This analysis is shown to be especially fruitful if the autoregressive coefficients - a by product of the filtering procedure - are used to estimate the information flow between the channels by the calculation of partial as well as directed coherences for the representative segments.  相似文献   

5.
Epilepsy is a common neurological disorder that is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals are widely used to diagnose seizures. Because of the non-linear and dynamic nature of the EEG signals, it is difficult to effectively decipher the subtle changes in these signals by visual inspection and by using linear techniques. Therefore, non-linear methods are being researched to analyze the EEG signals. In this work, we use the recorded EEG signals in Recurrence Plots (RP), and extract Recurrence Quantification Analysis (RQA) parameters from the RP in order to classify the EEG signals into normal, ictal, and interictal classes. Recurrence Plot (RP) is a graph that shows all the times at which a state of the dynamical system recurs. Studies have reported significantly different RQA parameters for the three classes. However, more studies are needed to develop classifiers that use these promising features and present good classification accuracy in differentiating the three types of EEG segments. Therefore, in this work, we have used ten RQA parameters to quantify the important features in the EEG signals.These features were fed to seven different classifiers: Support vector machine (SVM), Gaussian Mixture Model (GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), and Radial Basis Probabilistic Neural Network (RBPNN). Our results show that the SVM classifier was able to identify the EEG class with an average efficiency of 95.6%, sensitivity and specificity of 98.9% and 97.8%, respectively.  相似文献   

6.
Epilepsy is a neurological disorder characterized by the presence of recurring seizures. Like many other neurological disorders, epilepsy can be assessed by the electroencephalogram (EEG). The EEG signal is highly non-linear and non-stationary, and hence, it is difficult to characterize and interpret it. However, it is a well-established clinical technique with low associated costs. In this work, we propose a methodology for the automatic detection of normal, pre-ictal, and ictal conditions from recorded EEG signals. Four entropy features namely Approximate Entropy (ApEn), Sample Entropy (SampEn), Phase Entropy 1 (S1), and Phase Entropy 2 (S2) were extracted from the collected EEG signals. These features were fed to seven different classifiers: Fuzzy Sugeno Classifier (FSC), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Probabilistic Neural Network (PNN), Decision Tree (DT), Gaussian Mixture Model (GMM), and Naive Bayes Classifier (NBC). Our results show that the Fuzzy classifier was able to differentiate the three classes with a high accuracy of 98.1%. Overall, compared to previous techniques, our proposed strategy is more suitable for diagnosis of epilepsy with higher accuracy.  相似文献   

7.
8.
9.
Dynamic EEG topography is used to study evoked potentials following thalamic stimulation as well as epileptic spikes and spike-wave complexes during stereotactic operations. Dynamic EEG topography is an effective method for displaying the distribution pattern of evoked potentials following thalamic stimulation. This technique makes it possible to observe successive increases in augmenting responses and to define the localization of epileptic foci.  相似文献   

10.
Epilepsy is characterized by paradoxical patterns of neural activity. They may cause different types of electroencephalogram (EEG), which dynamically change in shape and frequency content during the temporal evolution of seizure. It is generally assumed that these epileptic patterns may originate in a network of strongly interconnected neurons, when excitation dominates over inhibition. The aim of this work is to use a neural network composed of 50 x 50 integrate-and-fire neurons to analyse which parameter alterations, at the level of synapse topology, may induce network instability and epileptic-like discharges, and to study the corresponding spatio-temporal characteristics of electrical activity in the network. We assume that a small group of central neurons is stimulated by a depolarizing current (epileptic focus) and that neurons are connected via a Mexican-hat topology of synapses. A signal representative of cortical EEG (ECoG) is simulated by summing the membrane potential changes of all neurons. A sensitivity analysis on the parameters describing the synapse topology shows that an increase in the strength and in spatial extension of excitatory vs. inhibitory synapses may cause the occurrence of travelling waves, which propagate along the network. These propagating waves may cause EEG patterns with different shape and frequency, depending on the particular parameter set used during the simulations. The resulting model EEG signals include irregular rhythms with large amplitude and a wide frequency content, low-amplitude high-frequency rapid discharges, isolated or repeated bursts, and low-frequency quasi-sinusoidal patterns. A slow progressive temporal variation in a single parameter may cause the transition from one pattern to another, thus generating a highly non-stationary signal which resembles that observed during ECoG measurements. These results may help to elucidate the mechanisms at the basis of some epileptic discharges, and to relate rapid changes in EEG patterns with the underlying alterations at the network level.  相似文献   

11.

Background

Epilepsy is a neurological disease characterized by unprovoked seizures in the brain. The recent advances in sensor technologies allow researchers to analyze the collected biological records to improve the treatment of epilepsy. Electroencephalogram (EEG) is the most commonly used biological measurement to effectively capture the abnormalities of different brain areas during the EEG seizures. To avoid manual visual inspection from long-term EEG readings, automatic epileptic EEG seizure detection has become an important research issue in bioinformatics.

Results

We present a multi-context learning approach to automatically detect EEG seizures by incorporating a feature fusion strategy. We generate EEG scalogram sequences from the EEG records by utilizing waveform transform to describe the frequency content over time. We propose a multi-stage unsupervised model that integrates the features extracted from the global handcrafted engineering, channel-wise deep learning, and EEG embeddings, respectively. The learned multi-context features are subsequently merged to train a seizure detector.

Conclusions

To validate the effectiveness of the proposed approach, extensive experiments against several baseline methods are carried out on two benchmark biological datasets. The experimental results demonstrate that the representative context features from multiple perspectives can be learned by the proposed model, and further improve the performance for the task of EEG seizure detection.
  相似文献   

12.
Nonlinear dynamic properties were analyzed on the EEG and filtered rhythms recorded from healthy subjects and epileptic patients with complex partial seizures. Estimates of correlation dimensions of control EEG, interictal EEG and ictal EEG were calculated. The values were demonstrated on topograms. The delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–40 Hz) components were obtained and considered as signals from the cortex. Corresponding surrogate data was produced. Firstly, the influence of sampling parameters on the calculation was tested. The dimension estimates of the signals from the frontal, temporal, parietal and occipital regions were computed and compared with the results of surrogate data. In the control subjects, the estimates between the EEG and surrogate data did not differ (P > 0.05). The interictal EEG from the frontal region and occipital region, as well as its theta component from the frontal region, and temporal region, showed obviously low dimensions (P < 0.01). The ictal EEG exhibited significantly low-dimension estimates across the scalp. All filtered rhythms from the temporal region yielded lower results than those of the surrogate data (P < 0.01). The dimension estimates of the EEG and filtered components markedly changed when the neurological state varied. For each neurological state, the dimension estimates were not uniform among the EEG and frequency components. The signal with a different frequency range and in a different neurological state showed a different dimension estimate. Furthermore, the theta and alpha components demonstrated the same estimates not only within each neurological state, but also among the different states. These results indicate that the theta and alpha components may be caused by similar dynamic processes. We conclude that the brain function underlying the ictal EEG has a simple mechanism. Several heterogeneous dynamic systems play important roles in the generation of EEG. Received: 10 December 1999 / Accepted in revised form: 8 May 2000  相似文献   

13.
14.
Summary The marriage rate of epileptic patients was 62% in males und 78% in females. Compared with the rates in the general population, the male patients had a 15% lower rate, but there was no difference in females. There were 263 patients with at least one offspring selected for the study. There were 243 sons and 272 daughters (506 total, 1.9 per patient). Distribution by types of seizure was awakening grand mal, absence or myoclonic petit mal in 24%, grand mal with no aura in 21%, grand mal during sleep in 23%, diffuse grand mal in 7%, grand mal with aura in 13%, psychomotor seizure in 9%, and focal seizure in 3%. The probands were composed of 79% idiopathic and 21% symptomatic in pathogenetic classification. An epileptic EEG abnormality was demonstrated in 22% of male and 44% of female probands.The incidence of seizures among offspring was 2.4% (4.2% age-corrected) in a narrow sense (epilepsy) and 9.1% in a broad sense including febrile convulsions. The latter morbidity was 11.0% for the idiopathic and 3.2% for the symptomatic group; 11.0% for female and 6.9% for male probands; 10.2% for sons and 8.1% for daughters. The figure was higher for the probands with the age range at onset of seizure of 0–4 years (20.6%) and 20–29 years (12.6%) than for those with other age ranges; higher for those with awakening grand mal, absence, myoclonic petit mal, or grand mal with no aura than for those with other types of seizure; and higher for those with family history of epilepsy than those without it.Possible correlation of types of seizure between probands and offspring was demonstrated. Thirty-seven percent of offspring exhibited epileptic EEG abnormalities, and the ratio of epileptic EEG abnormalities to clinical manifestation is about 4:1.Possible existence of familial aggregation of EEG abnormalities and of two kinds of families with large or small epileptic predisposition was indicated.The importance of the role of hereditary and environmental factors in epileptic pathogenesis is proved, and the results of an investigation of congenital malformation among offspring of epileptic mothers are presented. These results were considered to be useful for genetic counseling of epileptic patients.  相似文献   

15.
16.
The unpredictability of the occurrence of epileptic seizures makes it difficult to detect and treat this condition effectively. An automatic system that characterizes epileptic activities in EEG signals would allow patients or the people near them to take appropriate precautions, would allow clinicians to better manage the condition, and could provide more insight into these phenomena thereby revealing important clinical information. Various methods have been proposed to detect epileptic activity in EEG recordings. Because of the nonlinear and dynamic nature of EEG signals, the use of nonlinear Higher Order Spectra (HOS) features is a seemingly promising approach. This paper presents the methodology employed to extract HOS features (specifically, cumulants) from normal, interictal, and epileptic EEG segments and to use significant features in classifiers for the detection of these three classes. In this work, 300 sets of EEG data belonging to the three classes were used for feature extraction and classifier development and evaluation. The results show that the HOS based measures have unique ranges for the different classes with high confidence level (p-value < 0.0001). On evaluating several classifiers with the significant features, it was observed that the Support Vector Machine (SVM) presented a high detection accuracy of 98.5% thereby establishing the possibility of effective EEG segment classification using the proposed technique.  相似文献   

17.
18.
19.
The aims and merits of the syntactical decomposition of the epileptic EEG are discussed in some detail. General assumptions in the design of segmenting algorithm - an essential part of the reduction of data program - are considered and a working example of segmenting routine os presented. This routine is designed as a finite state automaton, equivalent to a formal regular grammar. The performance of the routine on two sets of experimental data is presented and its intrinsic stability is shown in terms of cluster analysis of the segments produced. Means of extension of the proposed scheme to other cases of potential interest as well as possible applications in the higher level syntactical analysis are pointed out.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号