首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of cholinergic synapses in the rat olfactory bulb was investigated by measuring changes in the activity of choline acetyltransferase (ChAT; EC 2.3.1.6.), a presynaptic cholinergic marker, and in the concentration of muscarinic receptors, components of cholinoceptive membranes. Three biochemical properties of the muscarinic system also were examined for possible differentiation: ligand binding, molecular weight, and isoelectric point. Receptors from embryonic (day 18), neonatal (postnatal day 3), and adult rat olfactory bulbs exhibited identical complex binding (nH = 0.45) of the agonist carbachol. For each age, the relative proportions of high-affinity (Ki approximately equal to 1.0 microM) and low-affinity (Ki approximately equal to 100 microM) binding states were 60% and 40%, respectively. The antagonist pirenzepine also bound to high-affinity (Ki approximately equal to 0.15 microM, RH approximately equal to 70%) and low-affinity (Ki approximately equal to 2.0 microM, RL approximately equal to 30%) sites in neonatal and adult rats. Sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis of [3H]propylbenzilylcholine mustard-labeled receptors from neonatal and adult rats showed a single electrophoretic form with an apparent molecular weight of 65,000. In contrast, analytical isoelectric focusing indicated high pI (4.50) and low pI (4.00) receptor forms were present. Neonatal rats contained approximately equal proportions of the two receptor forms, whereas adult rats contained mainly the low pI form, indicating that molecular alteration of the receptor population had occurred during development. Comparison of postnatal changes in acetylcholine receptors and ChAT activity showed a striking correlation between the development of cholinergic terminals and muscarinic receptors. Throughout the first postnatal week, ChAT activity remained at 5% of adult levels; activity began to rise on postnatal day 6 and gradually reached adult levels (56 +/- 4 mumol of [3H]acetylcholine/h/g) during the fourth week. Similarly, muscarinic receptor concentration was low (30-50 fmol/mg) throughout the first week, began to rise at postnatal day 7; and reached 90% of adult levels (317 +/- 17 fmol/mg) by the fourth week. In contrast, there was little increase in the concentration of nicotinic acetylcholine receptors (30 fmol/mg) during this period. The parallel postnatal development of ChAT activity and muscarinic receptors suggests the existence of factors that couple the differentiation of presynaptic cholinergic terminals and postsynaptic cholinoceptive elements.  相似文献   

2.
Fryer AD  Adamko DJ  Yost BL  Jacoby DB 《Life sciences》1999,64(6-7):449-455
In the lungs, acetylcholine released from the parasympathetic nerves stimulates M3 muscarinic receptors on airway smooth muscle inducing contraction and bronchoconstriction. The amount of acetylcholine released from these nerves is limited locally by neuronal M2 muscarinic receptors. These neuronal receptors are dysfunctional in asthma and in animal models of asthma. Decreased M2 muscarinic receptor function results in increased release of acetylcholine and in airway hyperreactivity. Inflammation has long been associated with hyperreactivity and the role of inflammatory cells in loss of neuronal M2 receptor function has been examined. There are several different mechanisms for loss of neuronal M2 receptor function. These include blockade by endogenous antagonists such as eosinophil major basic protein, decreased expression of M2 receptors following infection with viruses or exposure to pro inflammatory cytokines such as gamma interferon. Finally, the affinity of acetylcholine for these receptors can be decreased by exposure to neuraminidase.  相似文献   

3.
Parotid gland of adult rats maintained exclusively on liquid (milk) diet for 7 or 13 days showed a 25% reduction in number of beta-adrenoceptors, and after 21 days, the reduction was 33%; with maintenance of rats on Metrecal for 7 days, the decrease was 24% for female rats and 22% for male rats. The decrease in number of muscarinic receptors after 7 or 13 days on milk was 32%, and 38% after 21 days; the decreases for rats on Metrecal for 7 days were 32% for females and 35% for males. In rats maintained on liquid (milk) diet for 7 days, and then denervated by unilateral removal of the parasympathetic and sympathetic innervations to parotid there were decreases of 39-42% in number of beta-receptors and 50-52% in muscarinic receptors at 6 or 14 days after denervation (maintenance on liquid diet for 13 and 21 days, respectively) from those of innervated glands of chow-fed rats; denervated glands of rats on chow diet showed the same reduction. Thus, it was concluded that absence of neurally mediated glandular activity, imposed by either diet or surgical removal of the nerves, caused marked decreases in number of both beta-adrenergic and muscarinic receptors, but that the presence of the nerves, even though inactive (liquid diet), provided a trophic influence that prevented the more marked decreases seen in the absence (surgical removal) of the nerves.  相似文献   

4.
The β-adrenergic and muscarinic cholinergic receptors in the splenic homogenates of control and 6-hydroxydopamine (6-OHDA) treated rats were characterized. The specific binding of [3H]dihydroalprenolol (DHA) and [3H]quinuclidinyl benzilate (QNB) in the rat spleen were saturable and of high affinity and showed pharmacological specificity of splenic β-adrenergic and muscarinic cholinergic receptors. Following 6-OHDA treatment, the Bmax value for specific [3H](-)DHA binding to the rat spleen was significantly increased by 26 percent and 22 percent compared to control at 2 and 3 weeks without a change in the Kd. In contrast, there was a 38 percent decrease in the Bmax for [3H](-)QNB in the 6-OHDA treated rat spleen at 2 and 3 weeks respectively without a change in the Kd. The Bmax value at 5 weeks was significantly greater than that at 2 or 3 weeks. The splenic norepinephrine (NE) concentration was markedly reduced by the 6-OHDA treatment at 1 to 3 weeks, while there was a significant recovery in the splenic NE concentration at 5 weeks. Thus, our results strongly suggest that we are biochemically localizing muscarinic cholinergic receptors on the sympathetic nerves of the rat spleen and that the β-adrenergic receptors of the spleen are localized postsynaptically.  相似文献   

5.
The aim of this study was to evaluate the influence of extremely low frequency magnetic field (ELF MF) on the reactivity of the central dopamine D(1) receptor in rats with dopamine neurons chemically damaged by 6-hydroxydopamine (6-OHDA), an animal model of human's Parkinson's disease. The experiment was carried out on male Wistar rats. On day 3 of postnatal life, a lasting and selective chemical damage of the central dopamine system was induced in the rats by infusion of 6-OHDA HBr (133.4 microg intracerebroventricular, base form) given bilaterally into lateral ventricles of the brain. Control animals received similar treatments injecting only vehicle. At 2 months of age, both 6-OHDA treated and control rats were randomly divided into two groups. Rats from the first group were exposed to 10 Hz sinusoidal, 1.8-3.8 mT magnetic field one hour daily for 14 days. Rats of the second group were sham exposed, with the applicator solenoid turned off. On the day after the final exposure the evaluations were made of the rat's spontaneous irritability, oral activity, and catalepsy. The MF exposed rat with chemically induced dopamine neurons damage exhibited a reduction of irritability and oral activity when stimulated with SKF 38393 (the agonist of central dopamine D(1) receptor) and some increase of catalepsy after administration of SCH 23390(the antagonist of central dopamine D(1) receptor). These results indicate that ELF MF reduce the reactivity of central dopamine D(1) receptors in rats.  相似文献   

6.
Eosinophils and airway nerves in asthma   总被引:6,自引:0,他引:6  
In the lungs, neuronal M2 muscarinic receptors limit the release of acetylcholine from postganglionic cholinergic nerves. However, these receptors are not functional under certain circumstances in animal models of hyperreactivity such as occurs after exposure of sensitised animals to an allergen or during a respiratory tract virus infection. This loss of M2 receptor function leads to an increase in acetylcholine release from cholinergic nerves and thus is a mechanism for the vagally mediated hyperreactivity seen in these animals. Studies in animal models of hyperreactivity have shown that eosinophils localise to the airway nerves of sensitised animals after antigen challenge. Inhibiting this localisation of eosinophils either with an antibody to the eosinophil survival cytokine IL-5 or the eosinophil adhesion molecule VLA-4 prevents loss of M2 muscarinic receptor function. It is likely that eosinophil MBP is responsible for the loss of M2 receptor function, since inhibiting eosinophil MBP with an antibody or neutralising MBP with heparin prevents this loss of function. These data are also supported by ligand binding studies where it has been shown that eosinophil MBP is an allosteric antagonist at neuronal M2 muscarinic receptors. Loss of function of lung neuronal M2 muscarinic receptors may also occur under certain circumstances in patients with asthma, although the mechanisms are not yet established.  相似文献   

7.
Previously we showed that intermittent administration of nicotine (NIC) in the dark phase decreased food intake and body weight and this could be blocked when the NIC receptor antagonist mecamylamine was infused into the fourth ventricle. Catecholaminergic neurons adjacent to the fourth ventricle contain NIC receptors and directly innervate the perifornical hypothalamus (PFH) which has been shown to be involved in regulation of feeding. This study explored whether NIC regulates feeding behavior by modulating catecholaminergic input to the PFH. Epinephrine and norepinephrine neuronal input was ablated within the PFH by infusion of 6-hydroxydopamine hydrobromide (6-OHDA), while bupropion was infused to protect dopaminergic neurons. After recovery of body weights to pre-surgery levels, food intake, meal size, meal number and body weight were measured after intermittent NIC injections. The results showed the PFH lesioned animals did not exhibit the typical prolonged drop in food intake, meal size and body weight normally associated with NIC administration. High performance liquid chromatography analyses demonstrated that compared to control rats, 6-OHDA administration significantly reduced PFH norepinephrine and epinephrine levels, but not dopamine levels. These results are consistent with NIC reducing food intake in part by acting through catecholaminergic neurons within or extending through the PFH.  相似文献   

8.
Several studies have shown anatomical and functional interconnections between catecholaminergic and somatostatinergic systems. To assess whether somatostatin (SS) may act presynaptically on catecholamine neurons, SS receptors were measured using radioligand test-tube binding assays on synaptosomes from hippocampus and frontoparietal cortex--areas that are innervated by catecholaminergic neurons with different densities and that have a high number of SS receptors--from control and 6-hydroxydopamine (6-OHDA)-treated rats. Intracerebroventricular (i.c.v.) injection of the catecholamine neurotoxin 6-OHDA (0.78 mg free base/kg of body weight in saline with 0.1% ascorbic acid) lowered hippocampal and frontoparietal cortical noradrenaline (NA) and dopamine (DA) levels at 1 week following the injection. Pretreatment of rats with desmethylimipramine (DMI) (40 mg/kg, intraperitoneal) prevented the drop in NA levels, but was not effective in attenuating DA depletion in the two brain areas studied. Treatment with 6-OHDA lowered the number of 125I-Tyr11-SS receptors in the hippocampus (130 +/- 19 vs. 266 +/- 16 fmol/mg protein, P < 0.001), whereas in the frontoparietal cortex a non significant 20% reduction in receptor number was found. The dissociation constants of 125I-Tyr11-SS binding to synaptosomes from frontoparietal cortex (0.65 +/- 0.06 vs. 0.60 +/- 0.04, P not significant) and hippocampus (0.44 +/- 0.04 vs. 0.63 +/- 0.14, P not significant) were similar in control and treated groups. Pretreatment with DMI reversed up to 80% of the effect of 6-OHDA on hippocampus SS receptors. DMI alone had no observable effect on the number and affinity of SS receptors. The 6-OHDA and the DMI treatment did not affect SLI levels in the brain areas studied. These results suggest that a portion of the hippocampal SS receptors may be localized presynaptically on the noradrenergic and dopaminergic nerve terminals.  相似文献   

9.
Control of airway smooth muscle is provided by parasympathetic nerves that release acetylcholine onto M(3) muscarinic receptors. Acetylcholine release is limited by inhibitory M(2) muscarinic receptors. In antigen-challenged guinea pigs, hyperresponsiveness is due to blockade of neuronal M(2) receptors by eosinophil major basic protein (MBP). Because exposure of guinea pigs to ozone also causes M(2) dysfunction and airway hyperresponsiveness, the role of eosinophils in ozone-induced hyperresponsiveness was tested. Animals were exposed to filtered air or to 2 parts/million ozone for 4 h. Twenty-four hours later, the muscarinic agonist pilocarpine no longer inhibited vagally induced bronchoconstriction in ozone-exposed animals, indicating M(2) dysfunction. M(2) receptor function in ozone-exposed animals was protected by depletion of eosinophils with antibody to interleukin-5 and by pretreatment with antibody to guinea pig MBP. M(2) function was acutely restored by removal of MBP with heparin. Ozone-induced hyperreactivity was also prevented by antibody to MBP and was reversed by heparin. These data show that loss of neuronal M(2) receptor function after ozone is due to release of eosinophil MBP.  相似文献   

10.
Abstract: To study potential biochemical correlates of dopamine (DA) and serotonin receptor supersensitivity, rats were lesioned at 3 days after birth with 6-hydroxydopamine (6-OHDA; 67 µg in each lateral ventricle; desipramine pretreatment, 20 mg/kg i.p., 1 h) and then sensitized with the DA D1 agonist, SKF 38393 HCl (3.0 mg/kg i.p. per day) either ontogenetically (daily, for 28 consecutive days from birth) and/or in adulthood (four weekly injections, 6–9 weeks from birth). Controls received vehicle in place of 6-OHDA or SKF 38393. Enhanced locomotor responses were observed after SKF 38393 at 6 weeks, only in rats that received SKF 38393 + 6-OHDA in ontogeny. Locomotor responses were further enhanced in this group after the last of four weekly SKF 38393 injections at the 9th week. These weekly SKF 38393 treatments also produced enhanced responses in 6-OHDA rats that did not receive SKF 38393 in ontogeny. When striata were studied at 11 weeks, the percentages of high and low affinity DA D1 binding sites were not altered. Basal as well as DA-, NaF-, and forskolin-stimulated adenylyl cyclase activities also were not changed. Dot blot analysis showed that there was a reduction of mRNA levels for DA D1, but not serotonin1C, receptors in the 6-OHDA groups. However, SKF 38393 at 6–9 weeks eliminated this alteration. Based on these findings it can be proposed that supersensitization may be a consequence of altered neuronal cross talk rather than an imbalance of receptor elements per se.  相似文献   

11.
12.
Abstract

We have examined the adaptive modifications of brain monoamine receptors in response to pathophysiological processes in animal disease models: 6-OHDA lesioned and spontaneously hypertensive rats (SHR).

The two models share a similar increase in D-1 receptor densities, while noradrenergic receptors are affected in different way: α;-1 and β are supersensitive in 6-OHDA lesioned rats and only α;-2 are increased in SHR. S-1 receptors too are up-regulated in SHR. We must notice that though receptor hypersensitivity in the 6-OHDA model is linked to massive decreases in neurotransmitter levels, this mechanism seems not to exist in the SHR model.  相似文献   

13.
The characteristics of [3H]Ro 5-4864 binding to "peripheral" benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of [3H]Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50%, respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of [3H]Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the Bmax of [3H]Ro 5-4864 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for [3H]Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion.  相似文献   

14.
It has been suggested that pesticide exposure may be a contributing factor underlying the increased incidence of asthma in the United States and other industrialized nations. To test this hypothesis, airway hyperreactivity was measured in guinea pigs exposed to chlorpyrifos, a widely used organophosphate pesticide. Electrical stimulation of the vagus nerves caused frequency-dependent bronchoconstriction that was significantly potentiated in animals 24 h or 7 days after a single subcutaneous injection of either 390 mg/kg or 70 mg/kg of chlorpyrifos, respectively. Mechanisms by which chlorpyrifos may cause airway hyperreactivity include inhibition of acetylcholinesterase (AChE) or dysfunction of M3 muscarinic receptors on airway smooth muscle or of autoinhibitory M2 muscarinic receptors on parasympathetic nerves in the lung. AChE activity in the lung was significantly inhibited 24 h after treatment with 390 mg/kg of chlorpyrifos, but not 7 days after injection of 70 mg/kg of chlorpyrifos. Acute exposure to eserine (250 microg/ml) also significantly inhibited lung AChE but did not potentiate vagally induced bronchoconstriction. Neuronal M2 receptor function was tested using the M2 agonist pilocarpine, which inhibits vagally induced bronchoconstriction in control animals. In chlorpyrifos-treated animals, pilocarpine dose-response curves were shifted significantly to the right, demonstrating decreased responsiveness of neuronal M2 receptors. In contrast, chlorpyrifos treatment did not alter methacholine-induced bronchoconstriction, suggesting that chlorpyrifos does not alter M3 muscarinic receptor function on airway smooth muscle. These data demonstrate that organophosphate insecticides can cause airway hyperreactivity in the absence of AChE inhibition by decreasing neuronal M2 receptor function.  相似文献   

15.
In the lungs, neuronalM2 muscarinic receptors limit AChrelease from parasympathetic nerves. In antigen-challenged animals, eosinophil proteins block these receptors, resulting in increased AChrelease and vagally mediated hyperresponsiveness. In contrast, diabeticrats are hyporesponsive and have increasedM2 receptor function. Becausethere is a low incidence of asthma among diabetic patients, weinvestigated whether diabetes protects neuronalM2 receptor function inantigen-challenged rats. Antigen challenge of sensitized rats decreasedM2 receptor function, increasedvagally mediated hyperreactivity by 75%, and caused a 10-fold increase in eosinophil accumulation around airway nerves. In antigen-challenged diabetic rats, neuronal M2receptor function was preserved and there was no eosinophilaccumulation around airway nerves. Insulin treatment of diabetic ratscompletely restored loss of M2receptor function, vagally mediated hyperresponsiveness, andeosinophilia after antigen challenge. These data demonstrate thatinsulin is required for development of airway inflammation, loss ofneuronal M2 muscarinic receptorfunction, and subsequent hyperresponsiveness in antigen-challenged ratsand may explain decreased incidence of asthma among diabetic humans.

  相似文献   

16.
The distribution of muscarinic cholinergic receptors, choline acetyl-transferase and acetylcholinesterase activities were measured in subcellular fractions of the rat striatum on the 5th and 15th days postnatally and in adulthood. The receptor density in the striatum of 5 and 15-day-old rats was 15%, respectively, of the adult value. Similar increases of the receptors could be detected in the synaptosomal and microsomal fractions in the postnatal life of rat. The activity of choline acetyltransferase on the same days was 15% and 28%. In the subcellular fractions, the enzyme activity was the highest in the microsomal fraction on both the 5th and 15th days postnatally. The activity of acetylcholinesterase in the homogenate was 6% of the adult value in the 5-day-old rat striatum, while in the synaptosomal fraction it was 11% and 47% of the adult value on the 5th and 15th days, respectively. Our results show that the development of the muscarinic cholinergic receptors precedes that of the two cholinergic enzymes in both 5 and 15-day-old rat striatum. This may suggest an early perikaryonal synthesis and the fast translocation of receptors to the axon terminals during ontogenetic development.  相似文献   

17.
Like other neurotransmitter receptors, muscarinic acetylcholine receptors are subject to regulation by the state of receptor activation. Prolonged increases in the concentration of muscarinic agonists result in a decrease in receptor density and loss of receptor sensitivity, both in vivo and in vitro. On the other hand, when the receptor is deprived of acetylcholine for a long duration in vivo, the receptor becomes more sensitive in responding to muscarinic agonists. However, it has been more difficult to demonstrate increases in receptor concentration that accompany this supersensitive state. The purpose of this review is to provide current information related to the characteristics of muscarinic receptor regulation and the molecular mechanisms underlying this phenomenon, regarding both the density of receptors and their transduction mechanisms. Furthermore, possible feedback regulatory roles of different second messenger signals are discussed. Particular emphasis is dedicated to molecular mechanisms of regulation of neuronal muscarinic receptors.  相似文献   

18.
The density of brain muscarinic receptors from four strains of inbred mice was determined. C57BL/6J mice had a significantly higher density of muscarinic receptors in the forebrain than Balb/cJ or C57BL/10J mice. In the midbrain, C57BL/6J mice also had the highest density of receptors and in the hindbrain, C57BL/6J and AKR/J mice had a two fold higher receptor density compared to the other two strains. These findings demonstrate that inbred strains of mice which exhibit a range of genetically-determined behaviors, have varying densities of muscarinic receptors.  相似文献   

19.
In cultured rat striatal neurons exposed to 10 microM morphine or oxotremorine for 24 hours, we observed an increased (about 30%) dopamine D1 receptor-stimulated cyclic AMP production, whereas no desensitization of mu-opioid receptor or muscarinic cholinergic receptor was found. However, whereas upregulation of dopamine D1 receptor-stimulated adenylate cyclase activity upon 7 days morphine exposure was at least as pronounced as observed after 24 hours of exposure to the opioid, this adaptive phenomenon was virtually absent following one week of oxotremorine treatment. This reduced adenylate cyclase sensitization upon 7 days oxotremorine exposure appeared to coincide with desensitization of muscarinic cholinergic receptors. A possible role of the resistance of mu receptors to desensitization and the (resulting) upregulation of the neuronal adenylate cyclase system upon chronic receptor activation in the development of opiate tolerance and dependence is suggested.  相似文献   

20.
Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号