首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aminoethoxyvinylglycine (AVG) and cobalt ions strongly inhibit the conversion of added methionine or aminocyclopropane-1-carboxylic acid (ACC) into ethylene by green-coloured, non-stressed Norway spruce (Picea abies L.) needles but only 30%–40% of basal ethylene formation is affected by such inhibitors. In addition, free radical-mediated ACC-independent ethylene formation (AIEF) of the type released by brown-coloured spruce needles also occurs in extracts from healthy green-coloured needles. Treatment with CdCl2 (10 mM), Na2S2O5 (5 mM) or FeSO4 (10 mM) induces 3–7 fold increases in the rates of ethylene evolution from green-coloured needles. However, only Cd2+-induced ethylene formation is inhibited by AVG while ethylene induced by S2O5 2- or Fe2+ is insensitive to added AVG although increased levels of ACC have also been detected in these treatments. Nevertheless, ethylene-forming decomposition of the precursors of AIEF is accelerated by S2O5 - or Fe2+ which indicates that the ethylene released from green-coloured spruce needles is formed by a combination of both the ACC-dependent and AIEF pathways.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - AIEF ACC-independent ethylene formation - EFE ethylene-forming enzyme - MACC N-malonyl(amino)cyclopropane-1-carboxylic acid - DTBN di-tert-butylnitroxide - MNP 2-methyl-2-nitrosopropane - SAM S-adenosylmethionine - TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxyl  相似文献   

2.
Effects of water stress on production of ethylene and its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), by loblolly pine ( Pinus taeda L.) seedlings from a Texas drought-hardy and a Virginia Coastal Plain source were investigated. Ethylene production rates in needles from the Virgnia source increased slightly with initial stress (-1.3 MPa), declined until water potential reached -1.6 MPa and then increased sharply at -2.5 MPa. The ethylene production rates in needles from the Texas also increased slightly with initial stress, then decreased with decreasing water potential. Ethylene production by root tissue was two to three times higher than needle tissue and decreased with decreasing water potential. ACC concentrations in needles of both seed sources decreased as water potential began decreasing. Below -1.4 MPa, ACC levels started increasing (Texas source) or remained constant until -2.8 MPa (Virginia source) at which time its level increased three-fold. Mean ACC levels in root tissue [122 nmol (g dry weight)−1] were slightly higher than the mean levels in the needle tissue [92 nmol (g dry weight) −1]; roots apparently were more efficient in converting it to ethylene since ethylene production was two to three times higher than needle tissue. The modulation of ethylene synthesis by ACC synthase and ethyleneforming enzyme appeared to be influenced by stress level, organ and seed source.  相似文献   

3.
The objective of the current investigation was to study the role of ethylene in the maturation of white spruce ( Picea glauca [Moench.] Voss) somatic embryos. This was carried out by examining the effects of (1) 1-aminocyclopropane-1-carboxylic acid (ACC), a direct precursor of ethylene in plant tissue, (2) silver nitrate (AgNO3), an inhibitor of ethylene action, (3) α -aminooxyamino acid (AOA), a potent inhibitor of ethylene biosynthesis, and (4) enrichment with ethylene. Ethylene biosynthesis was biphasic and gradually increased during embryo development, whereas endogenous ACC and N-malonylaminocyclopropane-1-carboxylic acid (mACC) decreased. Addition of ACC or AOA to the culture medium increased or decreased, respectively, ethylene biosynthesis by altering endogenous ACC levels during the culture period. In contrast to AOA and AgNO3, ACC and ethylene enrichment significantly decreased the production of mature somatic embryos and increased the browning of the cultures. However, the structure of the shoot apex in mature cotyledonary stage embryos formed under ethylene enrichment was similar to that in control systems. This shows that a reduction in ethylene is beneficial to maturation of white spruce somatic embryos. This is further substantiated by the finding that the inhibitory effects of AOA were partially reversed by the addition of ethylene. The possible effects of the interaction between ethylene and polyamines on somatic embryo development are also discussed.  相似文献   

4.
Suttle JC 《Plant physiology》1984,75(4):902-907
The effect of the defoliant thidiazuron (N-phenyl-N′1,2,3-thiadiazol-5-ylurea) on ethylene evolution from etiolated mung bean hypocotyl segments was examined. Treatment of hypocotyl segments with concentrations of thidiazuron equal to or greater than 30 nanomolar stimulated ethylene evolution. Increased rates of ethylene evolution from thidiazuron-treated tissues could be detected within 90 minutes of treatment and persisted up to 30 hours after treatment. Radioactive methionine was readily taken up by thidiazuron-treated tissues and was converted to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and an acidic conjugate of ACC. Aminoethoxyvinylglycine, aminooxyacetic acid, cobalt chloride, and α-aminoisobutyric acid reduced ethylene evolution from treated tissues. An increase in the endogenous content of free ACC coincided with the increase in ethylene evolution following thidiazuron treatment. Uptake and conversion of exogenous ACC to ethylene were not affected by thidiazuron treatment. No increases in the extractable activities of ACC synthase were detected following thidiazuron treatment.  相似文献   

5.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

6.
Cuttings were taken from 4-week-old seedlings of Norway spruce ( Picea abies L. Karst.) raised at two different irradiation levels. Rooting experiments showed that root formation was increased by the ethylene formed by adding 1-aminocyclopropane-1-carboxylic acid ACC or Ethrel, especially in the slowly rooting cuttings grown under high light (HL). Cobaltousion. an ethylene synthesis inhibitor, delayed rooting, especially in the easily rooted cuttings grown under low light (LL).
Compounds isolated from the cuttings using immunoaffinity chromatography, on a column with antibodies against cytokinins, and separated by HPLC decreased in amount during the first week of the rooting period. An increase in ethylene production accelerated this process, especially in cuttings grown under HL, whereas cobaltous ion delayed it. We suggest that ethylene stimulates rooting by enhancing the degradation of cytokinins.  相似文献   

7.
Ethylene production from an embryogenic culture of Norway spruce ( Picea abies L.) was generally low. ca 2.5 nl g−1 h−1, whereas 1-aminocyclopropane-1 -carboxylic acid (ACC) concentration was high, fluctuating between 50 and 500 nmol g−1 during the 11-day incubation period. Hypoxia (2.5 and 5 kPa O2) rapidly inhibited ethylene production without subsequent accumulation of ACC. Exogenous ACC (1, 10 and 100 μ M ) did not increase ethylene production, but the highest concentrations inhibited tissue growth. Ethylene (7 μl I−1) did not inhibit growth either when supplied as ethephon in the medium or in a continuous flow system. Benzyladenine (BA) had little effect on ethylene production, although it was necessary for sustaining the ACC level. Omission of 2.4-dichloro-phenoxyacetic acid (2.4-D) from the medium caused ethylene production to increase from about 2.5 to 7 nl g−1 h−1 within the 11-day incubation period. Although 2.4-D did not specifically alter the endogenous level of ACC, the lowest ACC level, 33 nmol g−1, was observed in tissue treated with 2.4-D (22.5 μ M ) and no BA for 11 days. Data from this treatment were used to estimate the kinetic constants for ACC oxidase, the apparent Km was 50 μ M and Vmax 2.7 nl g−1 h−1. Growth of the tissue was strongly inhibited by 2.4-D in the absence of BA, but weakly in the presence of BA (4.4 μ M ). The results suggest that ethylene or ACC may be involved in the induction of embryogenic tissue and in the early stages of embryo maturation.  相似文献   

8.
Previous studies have shown that uniconazole inhibits ethylene synthesis and protects plants from various stresses. The present research was conducted to delineate the mechanism of ethylene inhibition by uniconazole [(E)-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol]. Following heat stress of 48°C for 3 h, the shoots of the control wheat seedlings became desiccated, and the seedlings lost 23% of their fresh mass 8 h after stress. The control soybean seedlings had epinastic unifoliate leaves 5 h after foliar application (4.4 g.a.i./ha) of the herbicide triclopyr [(3,5,6-trichloro-2-pyridinyl)oxyacetic acid]. Soil drench applications of uniconazole, a potent member of the triazole family, reduced these symptoms associated with heat and herbicide stress in wheat (5.0 mg/L) and soybean (0.4 mg/L) seedlings, respectively. Basal ethylene production was inhibited 32 and 48% by uniconazole in the wheat and acotyledonous soybean seedlings, respectively. Following a 48°C heat stress, 1-aminocyclopropane-1-carboxylic acid (ACC) levels increased 40% in both the control and uniconazole-treated wheat seedlings. After triclopyr application, ACC levels increased 400% in both the control and uniconazoletreated soybean seedlings. The increased ACC levels, following stress, were accompanied by increased ethylene production from the control, but not from the uniconazole-treated wheat and acotyledonous soybean seedlings. Uniconazole treatment did not significantly change the basal or stress-induced N-malonyl-1-aminocyclopropane-1-carboxylic acid (MACC) levels compared to controls. These results suggest that uniconazole inhibits ethylene synthesis by interfering with the conversion of ACC to ethylene in wheat and acotyledonous soybean seedlings. Ethylene production and ACC conversion were not inhibited by uniconazole in excised soybean cotyledons. These results indicate that different ethylene-forming enzyme (EFE) systems operate in the soybean acotyledonous seedling and cotyledon, and the system in the former is inhibited by uniconazole.  相似文献   

9.
Uniconazole inhibits stress-induced ethylene in wheat and soybean seedlings   总被引:2,自引:0,他引:2  
Previous studies have shown that uniconazole inhibits ethylene synthesis and protects plants from various stresses. The present research was conducted to delineate the mechanism of ethylene inhibition by uniconazole [(E)-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol]. Following heat stress of 48°C for 3 h, the shoots of the control wheat seedlings became desiccated, and the seedlings lost 23% of their fresh mass 8 h after stress. The control soybean seedlings had epinastic unifoliate leaves 5 h after foliar application (4.4 g.a.i./ha) of the herbicide triclopyr [(3,5,6-trichloro-2-pyridinyl)oxyacetic acid]. Soil drench applications of uniconazole, a potent member of the triazole family, reduced these symptoms associated with heat and herbicide stress in wheat (5.0 mg/L) and soybean (0.4 mg/L) seedlings, respectively.Basal ethylene production was inhibited 32 and 48% by uniconazole in the wheat and acotyledonous soybean seedlings, respectively. Following a 48°C heat stress, 1-aminocyclopropane-1-carboxylic acid (ACC) levels increased 40% in both the control and uniconazole-treated wheat seedlings. After triclopyr application, ACC levels increased 400% in both the control and uniconazoletreated soybean seedlings. The increased ACC levels, following stress, were accompanied by increased ethylene production from the control, but not from the uniconazole-treated wheat and acotyledonous soybean seedlings. Uniconazole treatment did not significantly change the basal or stress-induced N-malonyl-1-aminocyclopropane-1-carboxylic acid (MACC) levels compared to controls. These results suggest that uniconazole inhibits ethylene synthesis by interfering with the conversion of ACC to ethylene in wheat and acotyledonous soybean seedlings. Ethylene production and ACC conversion were not inhibited by uniconazole in excised soybean cotyledons. These results indicate that different ethylene-forming enzyme (EFE) systems operate in the soybean acotyledonous seedling and cotyledon, and the system in the former is inhibited by uniconazole.  相似文献   

10.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

11.
In excised wheat (Triticum aestivum L.) leaves, water-deficit stress resulted in a rapid increase, followed by a decrease, in ethylene production rates and in the levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene. However, the level of N-malonyl-ACC (MACC), the major metabolite of ACC, increased gradually, then leveled off. This increase in MACC was much greater than the decrease in ACC level. The MACC levels were positively correlated with severity of water stress. Once established, the MACC levels did not decrease even after the stressed tissues were rehydrated. Administration of labeled ACC and MACC showed that the conjugation of ACC to MACC was essentially irreversible. Repeated wilting treatments following the first wilting and rehydration cycle resulted in no further increase in ethylene production and in the levels of ACC and MACC. However, when benzyladenine was supplied during the preceding rehydration process, subsequent wilting treatment resulted in a rise in MACC level and a rapid rise followed by a decline in ethylene production rates and in the level of ACC. The magnitude of these increases was, however, smaller in these rewilted tissues than that observed in the first wilting treatment. Since MACC accumulates with water stress and is not appreciably metabolized, the MACC level is a good indicator of the stress history in the detached leaves used.  相似文献   

12.
Several lines of evidence indicate that the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by microsomal membranes from carnation flowers is attributable to hydroperoxides generated by membrane-associated lipoxygenase (EC 1.13.11.12). As the flowers senesce, the capability of isolated microsomal membranes to convert ACC to ethylene changes. This pattern of change, which is distinguishable from that for senescing intact flowers, shows a close temporal correlation with levels of lipid hydroperoxides formed by lipoxygenase in the same membranes. Specific inhibitors of lipoxygenase curtail the formation of lipid hydroperoxides and the production of ethylene from ACC to much the same extent, whereas treatment of microsomes with phospholipase A2, which generates fatty-acid substrates for lipoxygenase, enhances the production of hydroperoxides as well as the conversion of ACC to ethylene. Lipoxygenase-generated lipid hydroperoxides mediate the conversion of ACC to ethylene in a strictly chemical system and also enhance ethylene production by microsomal membranes. The data collectively indicate that the in-vitro conversion ACC to ethylene by microsomal membranes of carnation flowers is not reflective of the reaction mediated by the native in-situ ethylene-forming enzyme.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid  相似文献   

13.
The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.  相似文献   

14.
The present study was carried out to understand the mechanism of salt stress amelioration in red pepper plants by inoculation of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. In general, ethylene production, ACC concentration, ACC synthase (ACS), and ACC oxidase (ACO) enzyme activities increased with increasing levels of salt stress. Treatment with halotolerant bacteria reduced ethylene production by 47–64%, ACC concentration by 47–55% and ACO activity by 18–19% in salt-stressed (150 mmol NaCl) red pepper seedlings compared to uninoculated controls. ACS activity was lower in red pepper seedlings treated with Bacillus aryabhattai RS341 but higher in seedlings treated with Brevibacterium epidermidis RS15 (44%) and Micrococcus yunnanensis RS222 (23%) under salt-stressed conditions as compared to uninoculated controls. A significant increase was recorded in red pepper plant growth under salt stress when treated with ACC deaminase-producing halotolerant bacteria as compared to uninoculated controls. The results of this study collectively suggest that salt stress enhanced ethylene production by increasing enzyme activities of the ethylene biosynthetic pathway. Inoculation with ACC deaminase-producing halotolerant bacteria plays an important role in ethylene metabolism, particularly by reducing the ACC concentration, although a direct effect on reducing ACO activity was also observed. It is suggested that growth promotion in inoculated red pepper plants under inhibitory levels of salt stress is due to ACC deaminase activity present in the halotolerant bacteria.  相似文献   

15.
Y. Liu  N. E. Hoffman  S. F. Yang 《Planta》1985,164(4):565-568
The increase in ethylene formation and in 1-aminocyclopropane-1-carboxylic acid (ACC) content in flavedo tissue of grapefruit (Citrus paradisi Macfad. cv. Ruby Red) in response to excision was markedly inhibited by exogenous ethylene. Ethylene treatment inhibited the synthesis of ACC, but increased the tissue's capability to malonylate ACC to N-malonyl-ACC, resulting in further reduction in the endogenous ACC content. The development of extractable ACC-malonyl-transferase activity in the tissue was markedly promoted by treatment with exogenous ethylene. These results indicate that the autoinhibition of ethylene production in this tissue results not only from suppression of ACC synthesis, but also from promotion of ACC malonylation; both processes reduce the availability of ACC for ethylene synthesis.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethyoxyvinylglycine (2-amino-4-(2-aminoexthoxy)-trans-3-butenoic acid) - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid  相似文献   

16.
Journal of Plant Growth Regulation - Exogenous ethylene (ET) or its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) may increase stress tolerance of plants in long-term experiments. ACC...  相似文献   

17.
Jennifer F. Jones  Hans Kende 《Planta》1979,146(5):649-656
1-Aminocyclopropane-1-carboxylic acid (ACC) stimulated the production of ethylene in subapical stem sections of etiolated pea (cv. Alaska) seedlings in the presence and absence of indole-3-acetic acid (IAA). No lag period was evident following application of ACC, and the response was saturated at a concentration of 1 mM ACC. Levels of endogenous ACC paralleled the increase in ethylene production in sections treated with different concentrations of IAA and with selenoethionine or selenomethionine plus IAA. The IAA-induced formation of both ACC and ethylene was blocked by the rhizobitoxine analog aminoethoxyvinylglycine (AVG). Labelling studies with L-[U-14C]methionine showed an increase in the labelling of ethylene and ACC after treatment with IAA. IAA had no specific effect on the incorporation of label into S-methylmethionine or homoserine. The specific radioactivity of ethylene was similar to the specific radioactivity of carbon atoms 2 and 3 of ACC after treatment with IAA, indicating that all of the ethylene was derived from ACC. The activity of the ACC-forming enzyme was higher in sections incubated with IAA than in sections incubated with water alone. These results support the hypothesis that ACC is the in-vivo precursor of ethylene in etiolated pea tissue and that IAA stimulates ethylene production by increasing the activity of the ACC-forming enzyme.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine - IAA indole-3-acetic acid - SAM S-adenosylmethionine - SMM S-methylmethionine  相似文献   

18.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

19.
Capillary electrophoresis revealed that the endogenous level of ACC (1-aminocyclopropane-1-carboxylic acid) in the gametophytes of Anemia phyllitidis was elevated during GA3-induced male determination, whereas AOA (aminooxyacetic acid, specific inhibitor of ACC synthase) in untreated as well as in the GA3-treated gametophytes decreased concentration of ACC. The mechanism of ethylene involvement in controlling antheridiogenesis reflected at the level of ACC, which is supposed to mediate interactions between ethylene and gibberellins, is proposed.  相似文献   

20.
The four Helianthus annuus (sunflower) inbred lines examined showed different abilities to convert 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene and different morphological responses to exogenous ACC, however, ACC had no effect on precocious flowering. The greatest effect of ACC was seen with inbred SS405B where it suppressed shoot growth and induced hypocotyl enlargement and callus induction. The greatest response did not correlate with the highest ethylene production. Although each inbred responded differently, callus induction and hypocotyl enlargement observed in hypocotyl segments treated with naphthalene acetic acid and benzyladenine could be partially explained as ethylene-mediated effects of the two hormones. It is suggested that inbred differences could be due to different endogenous hormone levels and/or different sensitivities to them.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - BA benzyladenine - NAA naphthalene acetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号