首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The incorporation of unnatural amino acids into proteins is a valuable tool for addition of biophysical probes, bio-orthogonal functionalities, and photoreactive cross-linking agents, although these approaches often require quantities of protein that are difficult to access with chemically aminoacylated tRNAs. THG73 is an amber suppressor tRNA that has been used extensively, incorporating over 100 residues in 20 proteins. In vitro studies have shown that the Escherichia coli Asn amber suppressor (ENAS) suppresses better than THG73. However, we report here that ENAS suppresses with <26% of the efficiency of THG73 in Xenopus oocytes. We then tested the newly developed Tetrahymena thermophila Gln amber suppressor (TQAS) tRNA library, which contains mutations in the second to fourth positions of the acceptor stem. The acceptor stem mutations have no adverse effect on suppression efficiency and, in fact, can increase the suppression efficiency. Combining mutations causes an averaging of suppression efficiency, and increased suppression efficiency does not correlate with increased DeltaG of the acceptor stem. We created a T. thermophila opal suppressor, TQOpS', which shows approximately 50% suppression efficiency relative to THG73. The TQAS tRNA library, composed of functional suppressor tRNAs, has been created and will allow for screening in eukaryotic cells, where rapid analysis of large libraries is not feasible.  相似文献   

2.
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies.  相似文献   

3.
The development of a method for the site-specific incorporation of unnatural amino acids into proteins in vivo would significantly facilitate studies of the cellular function of proteins, as well as make possible the synthesis of proteins with novel structures and activities. Our approach to this problem consists of the generation of amber suppressor tRNA/aminoacyl-tRNA synthetase pairs that are not catalytically competent with all the endogenous Escherichia coli tRNAs and aminoacyl-tRNA synthetases, followed by directed evolution of such orthogonal aminoacyl-tRNA synthetases to alter their amino acid specificities. To evolve the desired amino acid specificity, a direct selection for site-specific incorporation of unnatural amino acids into a reporter epitope displayed on the surface of M13 phage has been developed and characterized. Under simulated selection conditions, phage particles displaying aspartate were enriched over 300-fold from a pool of phage displaying asparagine using monoclonal antibodies raised against the aspartate-containing epitope. The direct phage selection offers high specificity for the amino acid of interest, eliminating the potential for contamination with synthetases active towards wild-type amino acids in multiple rounds of selection.  相似文献   

4.
5.
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but their low incorporation efficiency, which is possibly due to competition from release factors, limits the power and scope of this technology. Here we show that the reportedly essential release factor 1 (RF1) can be knocked out from Escherichia coli by 'fixing' release factor 2 (RF2). The resultant strain JX33 is stable and independent, and it allows UAG to be reassigned from a stop signal to an amino acid when a UAG-decoding tRNA-synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving new protein functions by enabling Uaa incorporation at multiple sites.  相似文献   

6.
Liu W  Brock A  Chen S  Chen S  Schultz PG 《Nature methods》2007,4(3):239-244
We developed a general approach that allows unnatural amino acids with diverse physicochemical and biological properties to be genetically encoded in mammalian cells. A mutant Escherichia coli aminoacyl-tRNA synthetase (aaRS) is first evolved in yeast to selectively aminoacylate its tRNA with the unnatural amino acid of interest. This mutant aaRS together with an amber suppressor tRNA from Bacillus stearothermophilus is then used to site-specifically incorporate the unnatural amino acid into a protein in mammalian cells in response to an amber nonsense codon. We independently incorporated six unnatural amino acids into GFP expressed in CHO cells with efficiencies up to 1 mug protein per 2 x 10(7) cells; mass spectrometry confirmed a high translational fidelity for the unnatural amino acid. This methodology should facilitate the introduction of biological probes into proteins for cellular studies and may ultimately facilitate the synthesis of therapeutic proteins containing unnatural amino acids in mammalian cells.  相似文献   

7.
Ryu Y  Schultz PG 《Nature methods》2006,3(4):263-265
We have developed a single-plasmid system for the efficient bacterial expression of mutant proteins containing unnatural amino acids at specific sites designated by amber nonsense codons. In this system, multiple copies of a gene encoding an amber suppressor tRNA derived from a Methanocaldococcus jannaschii tyrosyl-tRNA (MjtRNATyrCUA) are expressed under control of the proK promoter and terminator, and a gene encoding the desired mutant M. jannaschii tyrosyl-tRNA synthetase (MjTyrRS) is expressed under control of a mutant glnS (glnS') promoter.  相似文献   

8.
The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl-tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond translation, which together suggest that the role of tRNA is to deliver amino acids for a variety of processes that includes, but is not limited to, protein synthesis.  相似文献   

9.
Urate oxidase catalyzes the oxidation of uric acid with poor solubility to produce 5-hydroxyisourate and allantoin. Since allantoin is excreted in vivo, urate oxidase has the potential to be a therapeutic target for the treatment of gout. However, its severe immunogenicity limits its clinical application. Furthermore, studies on the structure-function relationships of urate oxidase have proven difficult. We developed a method for genetically incorporating p-azido-L-phenylalanine into target protein in Escherichia coli in a site-specific manner utilizing a tyrosyl suppressor tRNA/aminoacyl-tRNA synthetase system. We substituted p-azido-L-phenylalanine for Phe(170) or Phe(281) in urate oxidase. The products were purified and their enzyme activities were analyzed. In addition, we optimized the system by adding a "Shine-Dalgarno (SD) sequence" and tandem suppressor tRNA. This method has the benefit of site-specifically modifying urate oxidase with homogeneous glycosyl and PEG derivates, which can provide new insights into structure-function relationships and improve pharmacological properties of urate oxidase.  相似文献   

10.
Nature uses 20 canonical amino acids as the standard building blocks of proteins; however, the incorporation of unnatural amino acids (Uaas) can endow polypeptide sequences with new structural and functional features. Although aminoacyl-tRNA synthetases (aaRSs) can accept an array of Uaas in place of their natural counterparts, Uaas generally are charged to tRNAs with substantially lower efficiencies. This particularly makes it difficult to incorporate multiple Uaas into a protein sequence. In this study, we discuss the use of a cell-free protein synthesis system as a versatile platform for the efficient incorporation of multiple Uaas into proteins. Taking advantage of the open nature of cell-free protein synthesis that allows flexible manipulation of its ingredients, we explored the application of Uaas in 10 mM range of concentrations to kinetically overcome the low affinity of aaRSs towards unnatural amino acids. Supplementation of recombinant aaRSs was also investigated to further increase the Uaa-tRNA pools. As a result, under the modified reaction conditions, as many as five different Uaas could be incorporated into a single protein without compromising the yield of protein synthesis.  相似文献   

11.
Compstatin, a 13-residue cyclic peptide, is a complement inhibitor that shows therapeutic potential. Several previous approaches have improved the activity of this peptide several-fold. In the present study, we have expressed and purified compstatin from Escherichia coli in an effort to increase its potency and to generate it in high yield in a more economical fashion. An intein-based expression system was used to express compstatin in fusion with chitin-binding domain and Ssp DnaB intein, which were later cleaved from the expressed molecule at room temperature and pH 7.0 to yield pure compstatin in one step. The expressed compstatin showed activity similar to the synthetic compstatin in an ELISA-based assay. The same expression system and purification strategy were used to incorporate three tryptophan analogs, 6-fluoro-tryptophan, 5-hydroxy-tryptophan, and 7-aza-tryptophan, into compstatin. Interestingly, incorporation of 6-fluoro-tryptophan increased the activity three-fold relative to wild-type compstatin; in contrast, incorporation of 5-hydroxy- or 7-aza-tryptophan rendered compstatin less active than the wild-type form.  相似文献   

12.
Using aminoacyl-tRNA synthetase/suppressor tRNA pairs derived from Methanocaldococcus jannaschii, an Escherichia coli cell-free protein production system affords proteins with site-specifically incorporated unnatural amino acids (UAAs) in high yields through the use of optimized amber suppressor tRNA(CUA)(opt) and optimization of reagent concentrations. The efficiency of the cell-free system allows the incorporation of trifluoromethyl-phenylalanine using a polyspecific synthetase evolved previously for p-cyano-phenylalanine, and the incorporation of UAAs at two different sites of the same protein without any re-engineering of the E. coli cells used to make the cell-free extract.  相似文献   

13.
There is evidence that tRNA bodies have evolved to reduce differences between aminoacyl-tRNAs in their affinity to EF-Tu. Here, we study the kinetics of incorporation of L-amino acids (AAs) Phe, Ala allyl-glycine (aG), methyl-serine (mS), and biotinyl-lysine (bK) using a tRNAAla-based body (tRNAAlaB) with a high affinity for EF-Tu. Results are compared with previous data on the kinetics of incorporation of the same AAs using a tRNAPheB body with a comparatively low affinity for EF-Tu. All incorporations exhibited fast and slow phases, reflecting the equilibrium fraction of AA-tRNA in active ternary complex with EF-Tu:GTP before the incorporation reaction. Increasing the concentration of EF-Tu increased the amplitude of the fast phase and left its rate unaltered. This allowed estimation of the affinity of each AA-tRNA to EF-Tu:GTP during translation, showing about a 10-fold higher EF-Tu affinity for AA-tRNAs formed from the tRNAAlaB body than from the tRNAPheB body. At ∼1 µM EF-Tu, tRNAAlaB conferred considerably faster incorporation kinetics than tRNAPheB, especially in the case of the bulky bK. In contrast, the swap to the tRNAAlaB body did not increase the fast phase fraction of N-methyl-Phe incorporation, suggesting that the slow incorporation of N-methyl-Phe had a different cause than low EF-Tu:GTP affinity. The total time for AA-tRNA release from EF-Tu:GDP, accommodation, and peptidyl transfer on the ribosome was similar for the tRNAAlaB and tRNAPheB bodies. We conclude that a tRNA body with high EF-Tu affinity can greatly improve incorporation of unnatural AAs in a potentially generalizable manner.  相似文献   

14.
G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-L-phenylalanine (Acp) and p-benzoyl-L-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reactive keto groups at three specific positions. We obtained functional mutant CCR5, at levels up to approximately 50% of wild type as judged by immunoblotting, cell surface expression, and ligand-dependent calcium flux. Rhodopsin containing Acp at three different sites was also purified in high yield (0.5-2 microg/10(7) cells) and reacted with fluorescein hydrazide in vitro to produce fluorescently labeled rhodopsin. The incorporation of reactive keto groups such as Acp or Bzp into GPCRs allows their reaction with different reagents to introduce a variety of spectroscopic and other probes. Bzp also provides the possibility of photo-cross-linking to identify precise sites of protein-protein interactions, including GPCR binding to G proteins and arrestins, and for understanding the molecular basis of ligand recognition by chemokine receptors.  相似文献   

15.
We have improved the incorporation of l- and d-forms of unnatural amino acid (UAA) Nε-thiaprolyl-l-lysine (ThzK) into ubiquitin (UB) and green fluorescent protein (GFP) by 2–6 folds with the use of the methylester forms of the UAAs in E coli cell culture. We also improved the yields of UAA-incorporated UB and GFP with the methylester forms of Nε-Boc-l-Lysine (BocK) and Nε-propargyl-l-Lysine (PrK) by 2–5 folds compared to their free acid forms. Our work demonstrated that using methylester-capped UAAs for protein expression is a useful strategy to enhance the yields of UAA-incorporated proteins.  相似文献   

16.
非天然氨基酸在医药、农药、材料等领域得到广泛应用,其绿色、高效合成越来越受到关注.近年来,随着合成生物学的快速发展,微生物细胞工厂为非天然氨基酸的制造提供了重要手段.文中从合成途径的重构、关键酶的设计改造及与前体的协同调控、竞争性旁路途径的敲除、辅因子循环系统的构建等方面介绍了 一系列非天然氨基酸细胞工厂构建与应用的研...  相似文献   

17.
Orthogonal aminoacyl‐tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM‐based molecular docking and free energy calculations were used to evaluate rational design of specific protein–ligand interactions for aminoacyl‐tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p‐benzoyl‐L ‐phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man‐α‐O‐Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
We describe the synthesis of several polyamides that retain the secondary structure of proteins and contain derivatizable side chains. The derivatizable side chain allows for further reaction of the polymer chain (e.g., chain cross-linking or addition of pendant groups). Polymers of α-amino acids containing a terminal unsaturated bond on the side chain have been synthesized. Poly-L -pentenyl glycine, poly-L -propargyl glycine, and poly-L -allyl glycine were synthesized chemically via Leuchs' anhydrides and enzymatically using subtilisin Carlsberg. Poly-L -propargyl glycine and poly-D ,L -allyl glycine folded into the β-sheet configuration whereas poly-L -pentenyl glycine assumed a helical conformation. The secondary structure of poly-L -allyl glycine and poly-D ,L -pentenylglycine could not be determined conclusively. Comparison of properties between the polymers obtained chemically and enzymatically is provided. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
20.
Six tRNA(Leu) isoacceptors from yellow lupin seeds were purified, sequenced, and their readthrough properties over the UAG stop codon were tested using TMV RNA as a messenger. The tested tRNAs(Leu) did not show amber suppressor activity. The partial structure of tRNA(Gln), a minor species in yellow lupin, was also determined. Comparison of the nucleotide sequence of all known isoacceptors of tRNA(Tyr), tRNA(Gln) and tRNA(Leu) from plants, mammals and ciliates enabled us to find general structural requirements for tRNA to be a UAG suppressor. From the partial sequence of lupin tRNA(Gln) we suggest that it will have readthrough properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号