首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO), superoxide (O(2)(-)), and their reaction product peroxynitrite (ONOO(-)) are generated in excess during a host's response against viral infection, and contribute to viral pathogenesis by promoting oxidative stress and tissue injury. Here we demonstrate that NO and peroxynitrite greatly accelerates the mutation of Sendai virus (SeV), a nonsegmented negative-strand RNA virus, by using green fluorescent protein (GFP) inserted into and expressed by a recombinant SeV (GFP-SeV) as an indicator for mutation. GFP-SeV mutation frequencies were much higher in the wild-type mice than in those lacking inducible NO synthase, suggesting that mutation of the virus in vivo is NO dependent. High levels of NO and NO-mediated oxidative stress were induced by GFP-SeV infection in the lung of the wild-type mice, but not in the iNOS-deficient mice, as evidenced by electron spin resonance spectroscopy and immunohistochemical analysis for nitrotyrosine formation as well as histopathological examination. Furthermore, peroxynitrite, an NO-derived reactive nitrogen intermediate, enhanced viral mutation in vitro. These results indicate that the oxidative stress induced by NO produced during the natural course of viral infection increases mutation, expands the quasispecies spectrum, and facilitates evolution of RNA viruses.  相似文献   

2.
Reactive oxygen and nitrogen species, respectively, mediate oxidative and nitrative stresses by means of oxidation and nitration of various biomolecules including proteins, lipids, and nucleic acids. We have observed nitric oxide (NO)-dependent formation of 8-nitroguanosine and 3-nitrotyrosine during microbial infection, and we determined that both 8-nitroguanosine and 3-nitrotyrosine are useful biomarkers of nitrative stress. Of importance, however, is the great difference in biological characteristics of these two nitrated compounds. 8-Nitroguanosine has unique biochemical and pharmacological properties such as redox activity and mutagenic potential, which 3-nitrotyrosine does not. In this review, we discuss the mechanism of nitrative stress occurring during microbial infections, with special emphasis on biological functions of 8-nitroguanosine formed via NO during the host response to pathogens. These findings provide insights into NO-mediated pathogenesis not only of viral infections but also of many other diseases.  相似文献   

3.
Gamma interferon (IFN-gamma)-induced nitric oxide synthase (iNOS) and nitric oxide (NO) production in the murine macrophage-like RAW 264.7 cells were previously shown to inhibit the replication of the poxviruses vaccinia virus (VV) and ectromelia virus and herpes simplex virus type 1. In the current study, we performed biochemical analyses to determine the stage in the viral life cycle blocked by IFN-gamma-induced NO. Antibodies specific for temporally expressed viral proteins, a VV-specific DNA probe, and transmission electron microscopy were used to show that the cytokine-induced NO inhibited late protein synthesis, DNA replication, and virus particle formation but not expression of the early proteins analyzed. Essentially similar results were obtained with hydroxyurea and cytosine arabinoside, inhibitors of DNA replication. Enzymatically active iNOS was detected in the lysates of IFN-gamma-treated but not in untreated RAW 264.7 cells. The IFN-gamma-treated RAW 264.7 cells which express iNOS not only were resistant to productive infection but also efficiently blocked the replication of VV in infected bystander cells of epithelial origin. This inhibition was arginine dependent, correlated with nitric production in cultures, and was reversible by the NOS inhibitor N omega-monomethyl-L-arginine.  相似文献   

4.
Hepatitis C virus (HCV) infection causes hepatitis, hepatocellular carcinoma, and B-cell lymphomas in a significant number of patients. Previously we have shown that HCV infection causes double-stranded DNA breaks and enhances the mutation frequency of cellular genes, including proto-oncogenes and immunoglobulin genes. To determine the mechanisms, we studied in vitro HCV infection of cell culture. Here we report that HCV infection activated the immunologic (type II) isoform of nitric oxide (NO) synthase (NOS), i.e., inducible NOS (iNOS), thereby inducing NO, which in turn induced DNA breaks and enhanced the mutation frequencies of cellular genes. Treatment of HCV-infected cells with NOS inhibitors or small interfering RNA specific for iNOS abolished most of these effects. Expression of the core protein or nonstructural protein 3 (NS3), but not the other viral proteins, in B cells or hepatocytes induced iNOS and DNA breaks, which could be blocked by NOS inhibitors. The core protein also enhanced the mutation frequency of cellular genes in hepatocytes derived from HCV core transgenic mice compared with that in control mice. The iNOS promoter was activated more than fivefold in HCV-infected cells, as revealed by a luciferase reporter assay driven by the iNOS promoter. Similarly, the core and NS3 proteins also induced the same effects. Therefore, we conclude that HCV infection can stimulate the production of NO through activation of the gene for iNOS by the viral core and NS3 proteins. NO causes DNA breaks and enhances DNA mutation. This sequence of events provides a mechanism for HCV pathogenesis and oncogenesis.  相似文献   

5.
6.
Macrophages are suspected to play a major role in human immunodeficiency virus (HIV) infection pathogenesis, not only by their contribution to virus dissemination and persistence in the host but also through the dysregulation of immune functions. The production of NO, a highly reactive free radical, is thought to act as an important component of the host immune response in several viral infections. The aim of this study was to evaluate the effects of HIV type 1 (HIV-1) Ba-L replication on inducible nitric oxide synthase (iNOS) mRNA expression in primary cultures of human monocyte-derived macrophages (MDM) and then examine the effects of NO production on the level of HIV-1 replication. Significant induction of the iNOS gene was observed in cultured MDM concomitantly with the peak of virus replication. However, this induction was not accompanied by a measurable production of NO, suggesting a weak synthesis of NO. Surprisingly, exposure to low concentrations of a NO-generating compound (sodium nitroprusside) and L-arginine, the natural substrate of iNOS, results in a significant increase in HIV replication. Accordingly, reduction of L-arginine bioavailability after addition of arginase to the medium significantly reduced HIV replication. The specific involvement of NO was further demonstrated by a dose-dependent inhibition of viral replication that was observed in infected macrophages exposed to N(G)-monomethyl L-arginine and N(G)-nitro-L-arginine methyl ester (L-NAME), two inhibitors of the iNOS. Moreover, an excess of L-arginine reversed the addition of L-NAME, confirming that an arginine-dependent mechanism is involved. Finally, inhibitory effects of hemoglobin which can trap free NO in culture supernatants and in biological fluids in vivo confirmed that endogenously produced NO could interfere with HIV replication in human macrophages.  相似文献   

7.
8.
Low levels of nitric oxide (NO) produced by constitutively expressed inducible NO synthase (NOS2) in tumor cells may be an important factor in their development. NOS2 expression is associated with high mortality rates for various cancers. Alternative splicing of NOS2 down-regulates its enzymatic activity, resulting in decreased intracellular NO concentrations. Specific probes to detect alternative splicing of NOS2 were used in two isogenic human colon cancer cell lines derived either from the primary tumor (SW480) or from a lymph node metastasis (SW620). Splicing variant of NOS2 S3, lacking exons 9, 10, and 11, was overexpressed in SW480 cells. NOS2 S3 was silenced in SW480 cells. Flow-cytometry analysis was used to estimate the intracellular NO levels and to analyze the cell cycle of the studied cell lines. Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine apoptosis and autophagy markers. SW480 and SW620 cells expressed NOS2 S3. Overexpression of the NOS2 S3 in SW480 cells downregulated intracellular NO levels. SW480 cells with knocked down NOS2 S3 (referred to as S3C9 cells) had higher intracellular levels of NO compared to the wild-type SW480 cells under serum restriction. Higher NO levels resulted in the loss of viability of S3C9 cells, which was associated with autophagy. Induction of autophagy by elevated intracellular NO levels in S3C9 cells under serum restriction, suggests that autophagy operates as a cytotoxic response to nitrosative stress. The expression of NOS2 S3 plays an important role in regulating intracellular NO production and maintaining viability in SW480 cells under serum restriction. These findings may prove significant in the design of NOS2/NO-based therapies for colon cancer.  相似文献   

9.
We investigated the inductive activity of infective influenza A/PR/8/34 (PR8) virus and its ether-split product (ESP) on the expression of inducible nitric oxide (NO) synthase (iNOS) and NO production in RAW264.7 (RAW) cells, a murine macrophage (M psi) cell line, and thioglycolate-elicited peritoneal M psi (TPM). In both cells, PR8 virus infection induced iNOS mRNA between 4 hr and 24 hr, attaining a peak value at 12 hr. In correlation with induction of iNOS mRNA, NO amounts increased significantly from 12 to 24 hr. Moreover, this study demonstrated that ESP with the same hemagglutination titer as PR8 virus could induce iNOS mRNA and NO production, although the inductive activity of ESP was weaker than that of PR8 virus. Considering the dual role (beneficial and detrimental roles) of NO on certain inflammatory disorders and virus infections, the inductive activity of influenza virus on the iNOS-mediated NO production independent of its infectivity might contribute to a modification of influenza virus infection.  相似文献   

10.
Formation of 8-nitroguanosine may be characterized as nucleic acid modification induced by nitric oxide (NO). We show here that 8-nitroguanosine is a highly redox-active nucleic acid derivative that strongly stimulated superoxide generation from various NADPH-dependent reductases, including cytochrome P450 reductase and all isoforms of NO synthase. This reaction involves these reductases in a redox cycling reaction via single-electron reduction of 8-nitroguanosine to form 8-nitroguanosine anion radical. One electron is then transferred from this radical to molecular oxygen. 8-Nitroguanosine formed in vivo may function as a potent redox cofactor that intensifies oxyradical generation by various NADPH/reductase-like enzymes and thus participates in diverse physiological and pathological events.  相似文献   

11.
BACKGROUND: Nitric oxide (NO) is cytostatic for proliferating cells, inhibits microbial growth, and down-regulates the synthesis of specific proteins. Studies were undertaken to determine the mechanism by which NO inhibits total protein synthesis and whether the inhibition correlates with established cytostatic activities of NO. MATERIALS AND METHODS: In in vitro experiments, various cell types were exposed to NO using either donors or expression of inducible NO synthase (iNOS). The capacity of NO to suppress total protein synthesis, measured by incorporation of 35S-methionine into protein, was correlated with the capacity of NO to suppress cell proliferation, viral replication, or iNOS expression. Phosphorylation of eIF-2 alpha was examined as a possible mechanism for the suppressed protein synthesis by NO. RESULTS: Both NO donors and expression of the iNOS suppressed total protein synthesis in L929 cells and A2008 human ovarian tumor cells in parallel with decreased cell proliferation. Suppressed protein synthesis was also shown to correlate with decreased vaccinia virus proliferation in murine peritoneal macrophages in an iNOS-dependent manner. Furthermore, iNOS expression in pancreatic islets or RAW264.7 cells almost completely inhibited total protein synthesis, suggesting that nonspecific inhibition of protein synthesis may be the mechanism by which NO inhibited the synthesis of specific proteins such as insulin or iNOS itself. This possibility was confirmed in RAW264.7 cells where the inhibition of total protein synthesis correlated with the decreased iNOS protein. The decrease in protein levels occurred without changes in iNOS mRNA levels, implicating an inhibition of translation. Mechanistic studies revealed that iNOS expression in RAW264.7 cells resulted in the phosphorylation of eIF-2 alpha and inhibition of the 80S ribosomal complex formation. CONCLUSIONS: These results suggest that NO suppresses protein synthesis by stimulating the phosphorylation of eIF-2 alpha. Furthermore, our observations indicate that nonspecific inhibition of protein synthesis may be a generalized response of cells exposed to high levels of NO and that inhibition of protein synthesis may contribute to many of the described cytostatic actions of NO.  相似文献   

12.
Intranasal inoculation of the neuroattenuated OBLV60 strain of mouse hepatitis virus results in infection of mitral neurons in the olfactory bulb, followed by spread along olfactory and limbic pathways to the brain. Immunocompetent BALB/c mice were able to clear virus by 11 days postinfection (p.i.). Gamma interferon (IFN-gamma) may play a role in clearance of OBLV60 from infected immunocompetent BALB/c mice through a nonlytic mechanism. Among the variety of immunomodulatory activities of IFN-gamma is the induction of expression of inducible nitric oxide synthase (iNOS), an enzyme responsible for the production of nitric oxide (NO). Studies were undertaken to investigate the role of IFN-gamma and NO in host defense and clearance of OBLV60 from the central nervous system (CNS). Exposure of OBLV60-infected OBL21a cells, a mouse neuronal cell line, to the NO-generating compound S-nitroso-L-acetyl penicillamine resulted in a significant decrease in viral replication, indicating that NO interfered with viral replication. Furthermore, infection of IFN-gamma knockout (GKO) mice and athymic nude mice with OBLV60 resulted in low-level expression of iNOS mRNA and protein in the brains compared to that of OBLV60-infected BALB/c mice. Nude mice were unable to clear virus and eventually died between days 11 and 14 p.i. (B. D. Pearce, M. V. Hobbs, T. S. McGraw, and M. J. Buchmeier, J. Virol. 68:5483-5495, 1994); however, GKO mice survived infection and cleared virus by day 18 p.i. These data suggest that IFN-gamma production in the olfactory bulb contributed to but may not be essential for clearance of OBLV60 from the brain. In addition, treatment of OBLV60-infected BALB/c mice with aminoguanidine, a selective inhibitor of iNOS activity, did not result in any increase in mortality, and the mice cleared the virus by 11 days p.i. These data suggest that although NO was able to block replication of virus in vitro, expression of iNOS with NO release in vivo did not appear to be the determinant factor in clearance of OBLV60 from CNS neurons.  相似文献   

13.
14.
Liriodenine is an aporphine alkaloid compound extracted from the leaves of Michelia compressa var. lanyuensis. It had been reported to have an anti-colon cancer effect, but the mechanism remains unclear. In the present study, the antiproliferative mechanisms of liriodenine were investigated in the human colon cancer SW480 cells. Flow cytometry analysis indicated that liriodenine notably induced the G1/S phase arrest. The G1/S phase cycle-related proteins analysis illustrated that the expressions of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6, and of cyclin D1 and A, as well as the phosphorylation of retinoblastoma tumor suppressor protein (ppRB) were found to be markedly reduced by liriodenine, whereas the protein levels of the CDK inhibitors (CKIs), p21 and p27 were increased. Moreover, the intracellular nitric oxide (NO) production, protein levels of inducible NO synthase (iNOS) and, p53 were increased. The p53 overexpression was a downstream event of NO production in liriodenine-induced G1/S-arrested SW480 cells, and the up-regulation of p21 and p27 was found to be mediated by a p53-dependent pathway. The inhibition of p53 by pifithrin-α (PFT-α), down-regulation of p21 and p27 by siRNA, or NO reduction by S-ethylisothiourea (ETU) entirely abolished the liriodenine-induced G1/S phase arrest. We concluded that liriodenine potently inhibited the cell cycle of SW480 cancer cells via NO- and p53-dependent G1/S phase arrest pathway. These results suggest that liriodenine might be a powerful agent against colon cancer.  相似文献   

15.
16.
To provide information on the susceptibility of mouse embryos to Sendai virus, it was investigated if viral replication occurs in the preimplantation embryo at different stages of development, with or without the zona pellucida (ZP). Mice were induced to superovulate, and embryos were collected on Days 2, 3 and 4 after mating. The ZP was removed by digestion with 0.5% pronase. Embryos were exposed to Sendai virus, washed, and allowed to develop in fresh culture medium. The presence of viral antigen in the embryonic cells was examined by the fluorescent antibody test (FAT). Specific immunofluorescence was demonstrated in the ZP-free morula and ZP-intact blastocyst. However, viral antigen was not detected in the ZP-intact two-cell, four-cell, eight-cell or morula stage embryos. Infected embryos developed normally to expanded blastocysts. These findings show that mouse embryonic cells are permissive hosts to Sendai virus replication and that the ZP played the role of a barrier against the virus.  相似文献   

17.
提取马立克氏病毒Ⅰ型疫苗毒株CVI988的总DNA为模板,利用PCR技术扩增出病毒生长非必需的US2基因并克隆入T—easy载体。将CMV启动子和增强子控制的含GFP基因表达盒克隆入US2基因中,成功构建了含GFP基因的转移质粒载体pGUS2GFP。用脂质体将其与CVI988株共转染CEF细胞,用96孔板稀释法得到纯化的表达绿色荧光蛋白的重组CVI988病毒株rCVIGFP,并分别测定其在体内和体外的生长情况。表达EGFP基因的重组病毒在细胞上生长曲线与亲本毒CVI988类似,体外实验表明,1日龄腹腔接种该重组毒后,可以从鸡体内分离到表达绿色荧光的病毒。  相似文献   

18.
In primary ocular herpes simplex virus (HSV) infection, nitric oxide may function to control viral replication and herpetic stromal keratitis (HSK) lesions. Recurrent HSK, manifested as corneal opacity and neovascularization, is the potentially blinding sequel to primary infection. Here, we assess the effects of nitric oxide synthase inhibition on a mouse model of recurrent HSK. In preliminary primary infection experiments, NIH inbred mice treated with aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), experienced no changes in post-infection tear, brain, or ganglia virus titers, but encephalitis-related mortality was elevated. After UV-B stimulated viral reactivation, iNOS inhibition did not affect virus shedding or clinical disease. In contrast to primary HSK, there was no exacerbation of mortality in recurrent disease. Our findings indicate that nitric oxide can be neuroprotective without antiviral effects in primary HSK, and does not play a significant role in the pathogenesis of recurrent HSK. Compared with data from other mouse strains, this work suggests that there may be a genetic component to the importance of NO in controlling ocular HSV infection.  相似文献   

19.
The ability of the Sendai virus major nucleocapsid protein, NP, to support the in vitro synthesis and encapsidation of viral genome RNA during Sendai virus RNA replication was studied. NP protein was purified from viral nucleocapsids isolated from Sendai virus-infected BHK cells and shown to be a soluble monomer under the reaction conditions used for RNA synthesis. The purified NP protein alone was necessary and sufficient for in vitro genome RNA synthesis and encapsidation from preinitiated intracellular Sendai virus defective interfering particle (DI-H) nucleocapsid templates. The amount of DI-H RNA replication increased linearly with the addition of increasing amounts of NP protein. With purified detergent-disrupted DI-H virions as the template, however, there was no genome RNA synthesis in either the absence or presence of the NP protein. Furthermore, addition of the soluble protein fraction of uninfected cells alone or in the presence of purified NP protein also did not support DI-H genome RNA synthesis from purified DI-H. Another viral component in addition to the NP protein appears to be required for the initiation of encapsidation, since the soluble protein fraction of infected but not uninfected cells did support DI-H genome replication from purified DI-H.  相似文献   

20.
Nitric oxide (NO) is an important signaling molecule between cells which has been shown to have an inhibitory effect on some virus infections. The purpose of this study was to examine whether NO inhibits the replication cycle of the severe acute respiratory syndrome coronavirus (SARS CoV) in vitro. We found that an organic NO donor, S-nitroso-N-acetylpenicillamine, significantly inhibited the replication cycle of SARS CoV in a concentration-dependent manner. We also show here that NO inhibits viral protein and RNA synthesis. Furthermore, we demonstrate that NO generated by inducible nitric oxide synthase, an enzyme that produces NO, inhibits the SARS CoV replication cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号