首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free ceramide and cerebroside were isolated from black gram sprouts of all germinating stages. Free ceramide and cerebroside were found to increase during germination.

The major sphingosine bases of free ceramide were 4-hydroxysphingenine and 4-hydroxy-sphinganine (trihydroxy type) while that of cerebroside was sphinga-4,8-dienine (dihydroxy type). A change in the component sphingosine base was that 4-hydroxysphingenine in free ceramide and cerebroside increased slightly after germination.

The major fatty acid of free ceramide was α-hydroxylignoceric acid while that of cerebroside was α-hydroxypalmitic acid. Changes in component fatty acid were that α-hydroxylignoceric acid in both sphingolipids increased after germination.  相似文献   

2.
Major neutral glycosphingolipid components were extracted from Sporothrix schenckii, a dimorphic fungus exhibiting a hyphal saprophytic phase and a yeast parasitic phase responsible for chronic mycotic infections in mammalian hosts. These components, one from the mycelial form and two from the yeast form, were purified and their structures were elucidated by (1)H nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and tandem ESI-MS/MS. All three were characterized as cerebrosides (monohexosylceramides) containing (4E, 8E)-9-methyl-4,8-sphingadienine as the long-chain base attached to N-2'-hydroxyoctadecanoate and N-2'-hydroxy-(E)-Delta(3)-octadecenoate as the fatty acyl components. However, while the mycelial form expressed only beta-glucopyranosylceramide, the yeast form expressed both beta-gluco- and beta-galactopyranosylceramides in approximately equal amounts. In addition, while the glucosylceramides of both mycelial and yeast forms had similar proportions of saturated and (E)-Delta(3) unsaturated 2-hydroxy fatty acid, the galactocerebroside of the yeast form had significantly higher levels of (E)-Delta(3) unsaturation.The differences in cerebroside hexose structure represent a novel type of glycosphingolipid dimorphism not previously reported in fungi. Possible implications of these findings with respect to regulation of morphological transitions in S. schenckii and other dimorphic fungi are discussed.  相似文献   

3.
Cerebroside (monohexosylceramide) components were identified in neutral lipids extracted from both the yeast and mycelial forms of the thermally dimorphic mycopathogen Histoplasma capsulatum. The components were purified from both forms and their structures elucidated by 1- and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and low energy tandem collision-induced dissociation mass spectrometry (ESI-MS/CID-MS). Both components were characterized as beta-glucopyranosylceramides (GlcCers) containing (4E,8E)-9-methyl-4,8-sphingadienine as the long-chain base, attached to 18-carbon 2-hydroxy fatty N-acyl components. However, while the fatty acid of the yeast form GlcCer was virtually all N-2'-hydroxyoctadecanoate, the mycelium form GlcCer was characterized by almost exclusive expression of N-2'-hydroxy-(E)-delta(3)-octadecenoate. These results suggest that the yeast-mycelium transition is accompanied by up-regulation of an as yet uncharacterized ceramide or cerebroside 2-hydroxy fatty N-acyl (E)-delta(3)-desaturase activity. They also constitute further evidence for the existence of two distinct pathways for ceramide biosynthesis in fungi, since glycosylinositol phosphorylceramides (GIPCs), the other major class of fungal glycosphingolipids, are found with ceramides consisting of 4-hydroxysphinganine (phytosphingosine) and longer chain 2-hydroxy fatty acids. In addition to identification of the major glucocerebroside components, minor components (< 5%) detectable by molecular weight differences in the ESI-MS profiles were also characterized by tandem ESI-MS/CID-MS analysis. These minor components were identified as variants differing in fatty acyl chain length, or the absence of the sphingoid 9-methyl group or (E)-delta(8)-unsaturation, and are hypothesized to be either biosynthetic intermediates or the result of imperfect chemical transformation by the enzymes responsible for these features. Possible implications of these findings with respect to chemotaxonomy, compartmentalization of fungal glycosphingolipid biosynthetic pathways, and regulation of morphological transitions in H.capsulatum and other dimorphic fungi are discussed.  相似文献   

4.
The total synthesis of D-erythro-sphingosine (9) was performed by a chirospecific method starting from D-galactose via an azidosphingosine intermediate to give highly homogeneous (>99.9% C18:1) sphingosine base (9) which contained no observable olefin isomerization by product and was demonstrated to be optically pure by a novel method utilizing Mosher's acid. Ceramide (10) was prepared from this sphingosine (9) with highly homogeneous (99.8% C16:0) palmitic acid by two methods. The cerebroside glucosylceramide (23) was the next sphingolipid in this series to be synthesized in a highly homogeneous form. These three sphingolipids are currently being used for biophysical studies of the structures of their hydrated bio-molecular assemblies.  相似文献   

5.
Severe essential fatty acid deficiency (EFAD) was induced by feeding weanling rats a diet free of essential fatty acids 8 months after weaning. The fatty acid compositions of phospholipids and glycosphingolipids in peripheral nerve myelin were compared in rats with and without EFAD. With the deficient diet, 20:3ω9 was found in the major myelin phospholipids. The level of 18:1 was increased and the levels of 18:2ω6, 20:4ω6, and 22:4ω6 were decreased. Both sphingomyelin and cerebroside showed higher proportion of 24:1 and lower proportions of 24:0 in EFA-deficient rats than in control rats. The fatty acid chain elongating system in myelin cerebroside was also depressed by EFAD. A two- to sevenfold increase of the ratio 20:4ω6 to 20:3ω6 was found in myelin phospholipids of regenerated nerve from rats fed control diet. However, this ratio was suppressed by EFAD diet. The biochemical index (20:3ω9/20:4ω6) for EFAD was not affected by crush injury. These results suggest that dietary EFAD in postweaning rats can induce fatty acid alterations in peripheral nerve myelin without resulting in detectable changes in function or structure and that myelin lipids may be sequestered and reused during nerve degeneration and regeneration.  相似文献   

6.
7.
Pinelloside, an antimicrobial cerebroside from Pinellia ternata   总被引:3,自引:0,他引:3  
Chen JH  Cui GY  Liu JY  Tan RX 《Phytochemistry》2003,64(4):903-906
An antimicrobial cerebroside, pinelloside, was isolated from the air-dried tubers of Pinellia ternata (Thunb.) Breit. Its structure was determined as 1-O-beta-D-glucopyranosyl-(2S,3R,4E,11E)-2-(2'R-hydroxyhexadecenoylamino)-4,11-octadecadiene-1,3-diol by chemical transformation and extensive spectroscopic analyses (IR, MS, 1H and 13C NMR, DEPT as well as 2D NMR techniques HMBC, HMQC, 1H-1H COSY and NOESY). The antimicrobial assay showed that this compound was inhibitory to the growth of Bacillus subtilis, Staphylococcus aureus, Aspergillus niger and Candida albicans, with minimum inhibitory concentrations (MICs) of 20, 50, 30 and 10 microg/ml, respectively. The MICs of penicillin G against bacteria B. subtilis, S. aureus, E. coli, P. fluorescens and H. pylori were 0.80, 0.34, 0.56, 1.34 and 0.92, and those of ketoconazole against fungi A. niger, C. albicans and T. rubrum 0.90, 0.65 and 1.0 microg/ml, respectively.  相似文献   

8.
Cerebroside was isolated from pea (Pisum sativum L.) seeds by solvent extraction, mild alkaline hydrolysis and silicic acid column chromatography. The purified material was identified as cerebroside by thin-layer chromatography and infrared spectrometry. Hydrolysates of the cerebroside were divided into fatty acid, sphingosine base and sugar fractions, and analysed, mainly by gas-liquid chromatography. The major fatty acid components were hydroxytricosanoic, hydroxydocosanoic and hydroxytetracosanoic acids. Dihydrosphingosine was the predominant sphingosine base. Only glucose was detected in the sugar fraction. Based on these results, one of the major species of pea cerebroside is suggested to be N-hydroxytricosanoyl-glucopyranosyl-dihydrosphingosine.  相似文献   

9.
A glycosphingolipid component of human brain, having long-chain cyclic acetals, has been isolated and characterized. This compound incorporates a novel type of natural glycan modification, in which a long-chain aliphatic aldehyde is conjugated through a cyclic acetal (plasmal) linkage to the galactosyl moiety of cerebroside. In addition to components normally observed by gas chromatography-mass spectrometry (GC-MS) following methanolysis of cerebroside (fatty acid methyl esters, methyl alpha- and beta-galactosides, sphingosine), this compound produced 16:0, 18:0, and 18:1 fatty aldehydes, unequivocally identified as their enol methyl ether derivatives. Results of positive ion fast atom bombardment mass spectrometry (FAB-MS) of the native compound, and GC-MS of partially methylated hexitol acetates derived from the permethylated derivative, were consistent with structures of galactocerebroside having 3,4- and 4,6-linked cyclic plasmal substituents, as shown. [formula: see text]  相似文献   

10.
Two glycolipids were isolated from pig brain and were shown to be the fatty acid esters of kerasin and cerebron in which the second fatty acid moiety is attached to the 6-position of the galactose. The point of attachment was shown in two ways: by permethylation and by cleavage with periodate. Methanolysis of the permethylated cerebroside esters yielded O-methyl sphingosines, methyl esters of nonhydroxy or 2-methoxy acids, and methyl 2,3,4-trimethyl galactoside. Cleavage of the cerebron ester with periodate, followed by treatment with sodium borohydride and dilute HCl, yielded ceramide plus 1-monoglyceride. The ester-linked fatty acids were primarily 16:0, 18:0, and 18:1, while the amide-linked fatty acids showed the wide assortment of chain lengths typical of brain cerebrosides. The methylation step, with silver oxide and methyl iodide, yielded two derivatives with the cerebroside esters, but the structural explanation for the difference was not elucidated. The galactose in the cerebron ester was shown to exist in the beta-pyranoside form.  相似文献   

11.
By using shotgun lipidomics based on the separation of lipid classes in the electrospray ion source (intrasource separation) and two-dimensional (2D) MS techniques (Han, X., and R. W. Gross. 2004. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of the cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. First published on June 18, 2004; doi: 10.1002/mas.20023, In press), individual molecular species of most major and many minor lipid classes can be quantitated directly from biological lipid extracts. Herein, we extended shotgun lipidomics to the characterization and quantitation of cerebroside molecular species in biological samples. By exploiting the differential fragmentation patterns of chlorine adducts using electrospray ionization (ESI) tandem mass spectrometry, hydroxy and nonhydroxy cerebroside species are readily identified. The hexose (either galactose or glucose) moiety of a cerebroside species can be distinguished by examination of the peak intensity ratio of its product ions at m/z 179 and 89 (i.e., 0.74 +/- 0.10 and 4.8 +/- 0.7 for galactose- and glucose-containing cerebroside species, respectively). Quantitation of cerebroside molecular species (as little as 10 fmol) from chloroform extracts of brain tissue samples was directly conducted by 2D ESI/MS after correction for differences in (13)C-isotopomer intensities. This method was demonstrated to have a greater than 1,000-fold linear dynamic range in the low concentration region; therefore, it should have a wide range of applications in studies of the cellular sphingolipid lipidome.  相似文献   

12.
From muscle tissues of the marine snail (Turbo cornutus) aminoalkylphosphonyl cerebrosides, which had been shown to be present in visceral parts, were isolated.Their structure was determined by degradative methods and by characterization of components by gas chromatography-mass spectrometry.The aminoalkylphosphonyl cerebroside fraction consisted of a major portion of 1-O-[6′-O-(N-methylaminoethylphosphonyl)galactosyl] ceramide and a minor portion of a novel lipid, 1-O-[6′-O-(aminoethylphosphonyl)galactosyl] ceramide.The fatty acids of the fraction were mainly palmitic (53.3%) and 2-hydroxy palmitic acid (14.6%). The long chain bases were mainly dihydroxy C22 : 2 (36.6%), C18 : 1 (14.6%) and C18 : 2 (11.3%), and trihydroxy bases were also found as minor components.  相似文献   

13.
Cerebrosides were found in ten lactose-assimilating yeasts. Representative component ceramide moieties of cerebrosides from nine of these yeasts contained 9-methyl-4-trans, 8-trans-sphingadienine, and 2-hydroxy fatty acid with carbon chain lengths of 16 or 18. The major ceramide moieties in Brettanomyces anomalus, however, differed from those in other yeasts, and were predominately moieties containing 2-hydroxymyristic acid. Thus we found that various cerebroside molecular species are present in yeasts.  相似文献   

14.
Caenorhabditis elegans FAT-2 has been characterized as fatty acid Δ12-desaturase able to desaturate C16 and C18 fatty acids. However, in this report we show that when expressed in yeast cells this enzyme can also catalyze Δ15 desaturation. This results in the production of both linoleic acid (ω6 C18:2Δ9,12) and linolenic acid (ω3 C18:3Δ9,12,15) from oleic acid (C18:1Δ9) substrate, and hexadecadienoic acid (ω4 C16:2Δ9,12) and hexadecatrienoic acid (ω1 C16:3Δ9,12,15) from palmitoleic acid (C16:1Δ9) substrate. In addition, this enzyme can also produce C14:2Δ9,12, C15:2Δ9,12, C17:2Δ9,12, and C18:4Δ6,9,12,15 when C14:1Δ9, C15:1Δ9, C17:1Δ9, and C18:3Δ6,9,12 substrates are available in yeast cells. Mass spectrometry analysis of 2,4-dimethyloxazoline modification of fatty acid methyl esters confirms the positions of all newly formed double bonds. These results indicate that when expressed in yeast the C. elegans Δ12-desaturase CeFAT-2 shows a characteristic of a bifunctional Δ12/Δ15-desaturase and has a great deal of elasticity with respect to fatty acid chain length in being able to accept fatty acids ranging from C14 to C18. Interestingly, despite possessing a bifunctional Δ12/Δ15 desaturation activity, phylogenetic analysis suggests that C. elegans Δ12-desaturase CeFAT-2 might have arisen independently from other reported dual Δ12/Δ15-desaturases from fungi and protozoa.  相似文献   

15.
A cerebroside fraction prepared from the mycelia of Schizophyllum commune was further fractionated into five components (I-V) by reverse-phase high-performance liquid chromatography. Fruiting-inducing activity was found in I-IV but not in V. By gas-liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses it was shown that these fractions contained: I, a mixture of N-2'-hydroxypentadecanoyl-1-O-glucosyl-nonadecasphingadienine++ + and N-2'-hydroxyhexadecanoyl-1-O-glucosyl-sphingadienine; II, (4E,8E)-N-D-2'-hydroxyhexadecanoyl-1-O-beta-D-glucopyr anosyl-9-methyl-4,8- sphingadienine (Kawai and Ikeda. 1983. Biochim. Biophys. Acta. 754: 243-248); III, N-2'-hydroxyheptadecanoyl-1-O-glucosyl-nonadecasphingadienine++ +; IV, N-2'-hydroxyoctadecanoyl-1-O-glucosyl-nonadecasphinadienine; V, (4E,8E)-N-2'-hydroxytetracosanoyl-1-O-beta-glucopyrano syl-9-methyl-4,8- sphingadienine. The only structural difference observed between biologically active and inactive cerebrosides was the chain length of acyl moiety; the cerebroside having an acyl chain of 24 carbon atoms was inactive.  相似文献   

16.
Rat brain increases in weight after birth in three stages: (I) rapidly for the first 2 weeks, (II) at a lower rate from 2 to 5 weeks, and (III) at a still lower rate from 5 weeks to 5 months. During the succeeding period, designated IV, it maintains constant weight up to 1 year of age. Brain ganglioside content increased linearly during I and II, more slowly during III, and diminished during IV. The appearance of measurable amounts of brain sphingomyelin and cerebroside succeeded that of ganglioside. Ceramide with C18-sphingosine and C18 fatty acid was found in a large proportion of all three sphingolipids upon their first appearance in measurable quantity. C18 fatty acid in cerebroside rapidly declined to a negligible level, while in gangliosides and sphingomyelin it declined slowly but remained the major fatty acid component. Cerebrosides and sphingomyelin contained C18-sphingosine almost exclusively at all stages of rat brain growth. Gangliosides contained C18-sphingosine almost exclusively at birth, but subsequently accumulated C20-sphingosine until they had nearly equal quantities of each base type. Changes in human brain gangliosides resemble those in rat. In Tay-Sachs disease, gangliosides have C18-sphingosine predominantly, and a high content of C18 fatty acid.  相似文献   

17.
Fine structural studies on the septa of Candida albicans in vitro (when leading a saprophytic existence) and the organism in its invasive form (as a pathogen in oral candidosis) have shown that in the former the septum exhibits a unique central perforation resembling an aggregate of fine canaliculi connecting one cell to the other. In the invasive form the septum is non-perforated and appears as a solid structure. Septal ultrastructure is well characterised in many pathogenic fungi. Our observations on Candida albicans do not resemble any previous studies carried out on other deutromycetous fungi.  相似文献   

18.
P18 (KWKLFKKIPKFLHLAKKF-NH2) is an antimicrobial peptide designed from a cecropin A-magainin 2 hybrid that has potent antibacterial activity without hemolytic activity against human erythrocytes. In this study, P18 displayed potent fungicidal activity (MIC: 12.5 approximately 25 microM) against pathogenic fungi, Candida albicans, Trichosporon beigelii, Aspergillus flavus and Fusarium oxyspovrum. The central Pro9 residue and the entire sequence of P18 are essential for its full fungicidal activity. Circular dichroism analysis suggested that the higher alpha-helical content of the peptides did not correlate with the stronger fungicidal activity.  相似文献   

19.
The reactivity of the acidic glycolipid cerebroside sulfate (CBS) with antibody was studied as a function of its lipid environment in vesicles and of its ceramide composition. The lipid environment was varied by using phosphatidylcholine of varying chain length with cholesterol in a phosphatidylcholine:cholesterol:cerebroside sulfate molar ratio to glycolipid of 1:0.75:0.1. The ceramide structure of CBS was varied by using synthetic forms containing palmitic acid, lignoceric acid, or the corresponding alpha-hydroxy fatty acids. Reactivity with antibody was determined by measuring complement-mediated lysis of the vesicles containing a spin-label marker, tempocholine chloride. The data were analyzed by a theoretical model which gives relative values for the dissociation constant and concentration of antibodies within the antiserum which are able to bind to the glycolipid. If the phosphatidylcholine chain length was increased, increasing the bilayer thickness, only a small population of high-affinity antibodies were able to bind to cerebroside sulfate, suggesting decreased surface exposure of the glycosyl head group. A larger population of lower affinity antibodies were able to bind to it in a shorter chain length phosphatidylcholine environment. However, if the chain length of the cerebroside sulfate was increased, it could be recognized by more antibodies of lower affinity than the short chain length form, suggesting that an increase in chain length of the glycolipid increased surface exposure. Hydroxylation of the fatty acid inhibited antibody binding; only a smaller population of higher affinity antibodies was able to bind to the hydroxy fatty acid forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Gram-negative rod shaped bacterium Myxococcus xanthus DK1622 produces a smooth-type LPS. The structure of the polysaccharide O-chain and the core-lipid A region of the LPS has been determined by chemical and spectroscopic methods. The O-chain was built up of disaccharide repeating units having the following structure: -->6)-alpha-D-Glcp-(1-->4)-alpha-D-GalpNAc6oMe*-(1--> with partially methylated GalNAc residue. The core region consisted of a phosphorylated hexasaccharide, containing one Kdo residue, unsubstituted at O-4, and no heptose residues. The lipid A component consisted of beta-GlcN-(1-->6)-alpha-GlcN1P disaccharide, N-acylated with 13-methyl-C14-3OH (iso-C15-3OH), C16-3OH, and 15-methyl-C16-3OH (iso-C17-3OH) acids. The lipid portion contained O-linked iso-C16 acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号