首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivities of three enzymes of the β-ketoadipate pathway to inactivation by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) were determined in vivo and in vitro under conditions compatible with mutagenesis.One enzyme, β-ketoadipate enol-lactone hydrolase, is very sensitive to inactivation by low concentrations of MNNG. This enzyme is also sensitive to inactivation by N-ethylmaleimide and mercurial reagents. The free sulfhydryl content of native enol-lactone hydrolase was determined to be two moles free sulfhydryl per mole of enzyme. A 95% inactivation of enol-lactone hydrolase by MNNG results in a masking of slightly more than one mole sulfhydryl per mole enzyme.Muconate lactonizing enzyme is moderately sensitive to inactivation by low concentrations of MNNG, but is not inactivated by sulfhydryl reagents. Muconolactone isomerase is resistant to inactivation by low concentrations of MNNG and is not inactivated by sulfhydryl reagents. Upon exposure to high concentrations of MNNG, muconolactone isomerase is rapidly inactivated. Spectrophotometric evidence indicates the lysine residues are nitroguanidinated proportionally with a loss in the enzymatic activity.These data indicate that the exposure of cells to low concentrations of MNNG should affect the activity of enzymes with essential sulfhydryl groups.  相似文献   

2.
The acetoacetyl-CoA-thiolase, a product of the acetoacetate degradation operon (ato) was purified to homogeneity as judged by polyacrylamide-gel electrophoresis at pH 4.5, 7.0, and 8.3. The enzyme has a molecular weight of 166,000 and is composed of four identical subunits. The subunit molecular weight is 41,500. Histidine was the sole N-terminal amino acid detected by dansylation. The thiolase contains eight free sulhydryl residues and four intrachain disulfide bonds per mole. The ato thiolase catalyzes the CoA- dependent cleavage of acetoacetyl-CoA and the acetylation of acetyl-CoA to form acetoacetyl-CoA. The maximal velocity in the direction of acetoacetyl-CoA cleavage was 840 nmol min? (enzyme unit)?1 and the maximal velocity in the direction of acetoacetyl CoA formation was 38 nmol min?1 (enzyme unit)?1. Like other thiolases, the ato thiolase was inactivated by sulfhydryl reagents. The enzyme was protected from inactivation by sulfhydryl reagents in the presence of the acyl-CoA substrates, acetyl-CoA and acetoacetyl-CoA; however, no protection was obtained when the enzyme was incubated with the acetyl-CoA analog, acetylaminodesthio-CoA. Consistent with these results was the demonstration of an acetyl-enzyme compound when the thiolase was incubated with [1-14C]acetyl-CoA. The sensitivity of the acetyl-enzyme bond to borohydride reduction and the protection afforded by acyl-CoA substrates against enzyme inactivation by sulfhydryl reagents indicated that acetyl groups are bound to the enzyme by a thiolester bond.  相似文献   

3.
Guanine aminohydrolase (GAH) (E.C. 3.5.4.3) was purified by affinity chromatography on 9-(p-β-aminoethoxyphenyl)guanine-Sepharose to a specific activity of 35.5 units/mg. The molecular weight of the enzyme was estimated to be 110,000 by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) showed that the enzyme was composed of subunits with molecular weights of approximately 52,000. Data from SDS-gel electrophoresis in a discontinuous buffer system and from isoelectric focusing in the presence of 8-m urea indicated that more than one type of subunit were present. This was consistent with multiple forms of the native enzyme seen by electrophoresis and isoelectric focusing in polyacrylamide gels. The isoelectric points for the different forms of GAH were in the range of 4.65–4.85. Amino acid analyses showed cysteine to be the minimum amino acid and gave a calculated molecular weight for GAH of 53,016 when the assumption that there were four cysteines per subunit was made. Guanine, 8-azaguanine, and 6-thioguanine served as substrates for the enzyme but 3-deazaguanine, a potent competitive inhibitor of GAH, did not. Fluoride ion inhibited the enzyme in a noncompetitive manner, and this inhibition decreased as pH increased. Variation of the kinetic parameters with pH suggested that hydroxide ion might be the second substrate and that a functional group on the enzyme with a pKa near 5.6 was involved in the reaction. The enzyme was inactivated by treatment with p-hydroxymercurobenzoate and by photooxidation in the presence of rose bengal. Two plausible mechanisms are proposed for the reaction catalyzed by GAH.  相似文献   

4.
Semicarbazide-sensitive amine oxidase activity was detected in Narcissus tazetta. The enzyme was purified to homogeneity by the criterion of native polyacrylamide gel electrophoresis (PAGE) with DEAE-Sephacel, hydroxyapatite, and phenyl-Sepharose columns. The molecular mass of the enzyme, determined using a GS-520 HQ column, was estimated to be 135 kDa. SDS–PAGE yielded two bands of, 75 kDa and 65 kDa. The enzyme, which had catalytic activity for some aliphatic and aromatic monoamines, belongs to a class of monoamine oxidases (MAOs). The K m value for n-propylamine was 5.9 × 10?5 M. A substrate analog, 2-bromoethylamine, inhibited enzyme activity. Redox-cycling staining detected a quinone in the MAO protein. By inductively coupled plasma mass analysis, it was determined that there were 2.44 moles of copper atoms per mole of the enzyme. Protein sequence analysis revealed that there was no identity between two N-terminal residues of the 75 kDa and 65 kDa proteins of narcissus MAO.  相似文献   

5.
Human plasma glutathione peroxidase (GPx) was purified to homogeneity by ammonium sulfate fractionation, gel filtration on Sephadex G-150, chromatography on DEAE Sephacel, chromatofocusing with polybuffer, and gel filtration with Sephadex G-75. This isolation resulted in about 5,400-fold purification of the enzyme with a 32% yield in enzyme activity. The final preparation had a specific activity of about 28 units (mmoles NADPH oxidized) per milligram of protein. Determination of selenium on the purified enzyme revealed a content of 3.8 g atoms per mole GPx. Gel electrophoresis using SDS with standard proteins revealed a molecular weight of about 23,000 for the subunits, which would indicate a molecular weight of about 92,000 for the native enzyme. Amino acid analyses of the purified GPx indicated aspartate, glutamate, proline, glycine, alanine, and leucine as the predominant amino acids and cysteine, methionine, tryptophan, and histidine as the minor amino acids.  相似文献   

6.
Thiosulfate Reductase of Desulfovibrio vulgaris   总被引:7,自引:5,他引:2       下载免费PDF全文
The thiosulfate reductase of Desulfovibrio vulgaris has been purified and some of its properties have been determined. Only one protein component was detected when the purified enzyme was subjected to polyacrylamide gel electrophoresis at pH values of 8.9, 8.0, and 7.6. In the presence of H(2), the enzyme, when coupled to hydrogenase and with methyl viologen as an electron carrier, catalyzed the reduction of thiosulfate to hydogen sulfide. The use of specifically labeled (35)S-thiosulfate revealed that the outer sulfur atom was reduced to sulfide and the inner sulfur atom was released as sulfite. Thus, the enzyme catalyzes the reductive dismutation of thiosulfate to sulfide and sulfite. The molecular weight of the enzyme was determined by sedimentation equilibrium (16,300) and amino acid analysis (15,500). The enzyme sedimented as a single, symmetrical component with a calculated sedimentation coefficient of 2.21S. Amino acid analysis revealed the presence of two half-cystine residues per mole of enzyme and a total of 128 amino acid residues. Carbohydrate and organic phosphorus analyses revealed the presence of 9.2 moles of carbohydrate and 4.8 moles of phosphate per mole of enzyme. The substrate specificity of the enzyme was studied.  相似文献   

7.
The (Na+ + Mg2+)-ATPase of the Acholeplasma laidlawii B plasma membrane was inactivated by the 2′,3′-dialdehyde derivative of ATP (oATP). oATP behaved as a reversible competitive inhibitor of this ATPase and was slowly hydrolyzed by the enzyme. In addition, oATP induced an irreversible inactivation of the enzyme. A 62% inactivation of the enzyme correlated with the binding of 16 moles of oATP per mole of the enzyme. In the presence of 5′-adenylyl imidodiphosphate, a non-hydrolyzable substrate analogue, the stoichiometry was 8 moles oATP per mole of ATPase. By SDS-polyacrylamide gel electrophoresis, [U-14C]oATP was found to bind covalently to four of the five subunits of the enzyme, but specific labeling was highest for the γ-subunit of the ATPase.  相似文献   

8.
Sulfhydryl oxidants and stabilizers caused changes demonstrating the sulfhydryl content of beta-galactosidase for Streptococcus lactis 7962. Ammonium sulfate (0.85 m) rendered the enzyme insensitive to the oxidants. Titrations revealed 11.5 moles of sulfhydryl per mole of enzyme.  相似文献   

9.
Four isoamylases have been isolated from human submandibular secretions by gel filtration and isoelectric focusing. The isozymes (1A, 1B, 2A, 2B) were each purified about 8-fold and each yielded one major band on disc gel electrophoresis. In all cases the major protein band contained more than 95% of the protein and amylase activity recovered. The isoenzymes, in order of their relative positions on the polyacrylamide gels (from the anodal end), their isoelectric points, and percentage distribution in the submandibular secretion are as follows: isozyme 2A, pH 5.9, 9%; isozyme 1A, pH 5.9, 18%; isozyme 2B, pH 6.4, 63%; isozyme 1B, pH 6.4, 10%. Amino acid analyses showed that the protein compositions of the four isoamylases were essentially the same. Possible differences were noted in aspartic acid, serine, glutamic acid, and proline contents. Molecular weights, determined by SDS disc gel electrophoresis, were 57,000 for 1A and 1B, and 54,000 for 2A and 2B. This molecular weight difference is attributed mainly to the presence of bound carbohydrate on isozymes 1A and 1B. Gas Chromatographic analysis was used for determining the carbohydrate compositions. Molar ratios of sugars were similar for both glycoprotein amylases (moles sugar/mole enzyme): glucosamine, 3; mannose, 3; galactose, 2; fucose, 3. Isoamylase 1A, which had more carbohydrate than 1B, also contained about 2 moles of N-acetylneuraminic acid. Sialic acid was not detected in isozyme 1B.  相似文献   

10.
Porphobilinogen oxygenase from wheat germ was purified and was found to be a cationic protein containing 8 mol of nonheme iron and 8–10 mol of labile sulfide per mole of enzyme (Mr, 100,000). The enzyme isolated from either wheat germ or rat liver microsomes was found to exist in multiple molecular weight forms. When succinylated, only one molecular weight form of 25,000 was obtained and it retained full activity. It had lost all of the sigmoidal kinetics characteristic of the native enzyme. While the native enzyme had an n = 3.5, the succinylated enzyme showed Michaelian kinetics. A Km of approximately 1.70 mm was determined for the succinylated wheat germ enzyme, and a Km of approximately 2.5 mm was found for the succinylated microsomal enzyme. Acetylation of the enzyme afforded an active acetylated enzyme which showed allosteric kinetics and multiple molecular weight forms. The products formed by the succinylated enzyme were the same as those formed by the native enzyme.  相似文献   

11.
The molecular weight of pig liver MAO has previously been shown to be about 115,000 with 1 mole of covalently bound FAD per mole of enzyme. Gel filtration of purified enzyme on Sepharose 4B in 6 m guanidine and 0.1 m mercaptoethanol (MCE) and analytical ultracentrifugation in 0.1% sodium dodecyl sulfate (SDS) and 0.1% MCE yielded molecular weights of 55,000 and 63,000, respectively. By polyacrylamide electrophoresis in 0.1% SDS + MCE one band of 60,000 MW appeared. These results seem to imply that the enzyme is composed of two subunits of which one carries the active site. If MCE was omitted during the gel electrophoresis two equally large bands of about 60,000 MW were formed. By using enzyme inhibited by [14C]pargyline, a MAO-inhibitor blocking the active site of the enzyme in a 1:1 molar ratio, it was found, however, that both bands contained pargyline. Furthermore, amino acid analyses yielded the same amino acid composition of the two bands. The results are interpreted that the enzyme is composed of two subunits of identical molecular size (about 60,000) of which only one contains the active site and that the enzyme preparation contained two forms of the enzyme presumably differing in the number of disulfide bonds.  相似文献   

12.
G Dibenedetto  I Cozzani 《Biochemistry》1975,14(13):2847-2852
Repressible nonspecific acid phosphatase from Schizosaccharomyces pombe was purified to apparent homogeneity, as ascertained from ultracentrifugal, electrophoretic, and chromatographic data. The native protein has a molecular weight of 383,000 as determined by sucrose density gradient centrifugation and 381,000 as determined by gel filtration. The native protein can be dissociated in the presence of 8 M urea-1% sodium dodecyl sulfate into sub-units possessing an approximate molecular weight of 104,000. Neutral sugars account for about 66% of the total molecular weight and contribute to the high solubility and some of the other physical properties of this enzyme. Purified enzyme preparations have a Km for 4-nitrophenyl phosphate of 0.17 mM and a broad substrate specificity, but do not show diesterase activity. Phosphate and sulfate are competitive inhibitors. The enzyme is inactivated at neutral and alkaline pH and at relatively low temperatures. Mannose and galactose was found as the main components of the carbohydrate moiety; glucosamine was present in lower amounts. The amino acid analysis revealed a high content of aspartate, threonine, and serine; no sulfhydryl group could be detected. Pi is released in stoichiometric amount (1 mol per enzyme monomer) on protein digestion.  相似文献   

13.
A soluble yellow CO dehydrogenase from CO-autotrophically grown cells of Pseudomonas carboxydohydrogena was purified 35-fold in seven steps to better than 95% homogeneity with a yield of 30%. The final specific activity was 180 μmol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, nicotinamide adenine dinucleotide (phosphate), flavin mononucleotide, and flavin adenine dinucleotide were not reduced by the enzyme, but methylene blue, thionin, and toluylene blue were reduced. The molecular weight of native enzyme was determined to be 4 × 105. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed at least three nonidentical subunits of molecular weights 14,000 (α), 28,000 (β), and 85,000 (γ). The ratio of densities of each subunit after electrophoresis was about 1:2:6 (α/β/γ), suggesting an α3β3γ3 structure for the enzyme. The purified enzyme was free of formate dehydrogenase and nicotinamide adenine dinucleotide-specific hydrogenase activities, but contained particulate hydrogenase-like activity with thionin as electron acceptor. Known metalchelating agents tested had no effect on CO dehydrogenase activity. No divalent cations tested stimulated enzyme activity. The native enzyme does not contain Ni since cells assimilated little 63Ni during growth, and the specific 63Ni content of the enzyme declined during purification. The isoelectric point of the native enzyme was found to be 4.5 to 4.7. The Km for CO was found to be 63 μM. The spectrum of the enzyme and its protein-free extract revealed that it contains bound flavin. The cofactor was flavin adenine dinucleotide based on enzyme digestion and thin-layer chromatography. One mole of native enzyme contains at least 3 mol of noncovalently bound flavin adenine dinucleotide.  相似文献   

14.
Ribulose Diphosphate Carboxylase from Autotrophic Euglena gracilis   总被引:11,自引:6,他引:5       下载免费PDF全文
Ribulose 1,5-diphosphate carboxylase (RUDPcase) from autotrophically grown Euglena gracilis was purified to homogeneity as measured by analytical ultracentrifugation, polyacrylamide gel electrophoresis, and immunoprecipitation reactions. The enzyme represented about 9% of total protein and 24% of soluble protein in the autotrophic cell. Light-grown, heterotrophic cells seemed to contain considerably less RUDPcase. Native carboxylase from autotrophic Euglena showed an s20, w at low protein concentrations of 17 to 17.5, suggesting a molecular weight of >500,000 daltons. Upon denaturation, the enzyme dissociated into two subunits having different amino acid compositions and molecular weights of 59,000 and 12,000 daltons. Based upon the amino acid mass ratios, a quaternary organization of 7 to 8 large and 8 to 10 small subunits per native enzyme molecule was indicated.  相似文献   

15.
The catalytic properties of the purified horseshoe crab and seaworm d-lactate dehydrogenases were determined and compared with those of several l-lactate dehydrogenases. Apparent Km's and degrees of substrate inhibition have been determined for both enzymes for pyruvate, d-lactate, NAD+ and NADH. They are similar to those found for l-lactate dehydrogenases. The Limulus “muscle”-type lactate dehydrogenase is notably different from the “heart”-type lactate dehydrogenase of this organism in a number of properties.The Limulus heart and muscle enzymes have been shown by several criteria to be stereospecific for d-lactate. They also stereospecifically transfer the 4-α hydrogen of NADH to pyruvate. The turnover number for purified Limulus muscle lactate dehydrogenase is 38,000 moles NADH oxidized per mole of enzyme, per minute. Limulus and Nereis lactate dehydrogenases are inhibited by oxamate and the reduced NAD-pyruvate adduct.Limulus muscle lactate dehydrogenase is stoichiometrically inhibited by para-hydroxymercuribenzoate. Extrapolation to two moles parahydroxymercuribenzoate bound to one mole of enzyme yields 100% inhibition. Alkylation by iodoacetamide or iodoacetate occurs even in the absence of urea or guanidine-HCl. Evidence suggests that the reactive sulfhydryl group may not be located at the coenzyme binding site.Reduced coenzyme (NADH or the 3-acetyl-pyridine analogue of NADH) stoichiometrically binds to Limulus muscle lactate dehydrogenase (two moles per mole of enzyme).Several pieces of physical and catalytic evidence suggest that the d- and l-lactate dehydrogenase are products of homologous genes. A consideration of a possible “active site” shows that as few as one or two key conservative amino acid changes could lead to a reversal of the lactate stereospecificity.  相似文献   

16.
Three molecular species of apolipophorin III were purified from adult locust hemolymph by gel filtration and ion-exchange chromatography, and named apo-III-a, apo-III-b, and apo-III-c, respectively. They were indistinguishable by SDS-polyacrylamide gel electrophoresis, immunodiffusion, and in amino acid composition; however, they had different isoelectric points (5.43 for a, 5.11 for b, and 4.98 for c) and, therefore, could be separated by native- or urea-gel electrophoresis. All three apo-IIIs were glycoproteins and contained fucose, mannose, and glucosamine. The total sugar content amounted to about 11% for each of the three apo-IIIs. The molecular weight of apo-III determined by SDS-polyacrylamide gel electrophoresis was approximately 20,000, almost equivalent to the native molecular weight (approximately 19,000) estimated by the sedimentation-equilibrium method. This indicated that the locust apo-III exists in hemolymph as a monomeric form. It was demonstrated that a total 9 moles of apo-III (2 moles apo-III-a, 6 moles apo-III-b, and 1 mole apo-III-c) associate with each mole of lipophorin in response to the action of locust adipokinetic hormone.  相似文献   

17.
As a corollary to X-ray crystallographic work performed by H. Muirhead, detailed studies on crystalline pig muscle phosphoglucose isomerase have been conducted to establish its basic physical and chemical properties. The enzyme species being investigated by X-ray diffraction has been determined to be isoenzyme III. Its molecular weight in the native state was found to be 132,000, its s020,w value to be 7·25 S. The enzyme is composed of two subunits of equal molecular weight (66,000). Its amino acid composition is largely similar to that of rabbit muscle phosphoglucose isomerase, with the significant exception that the pig muscle isomerase contains only three sulfhydryl groups per polypeptide chain (two of them accessible to titration with p-mercuribenzoate) as compared with twice that number for the rabbit muscle enzyme. This low number of sulfhydryl groups is interpreted as being responsible for the ease with which heavy-atom, isomorphous derivatives could be prepared for the pig muscle enzyme by Shaw & Muirhead (1977).  相似文献   

18.
Platelet heparin neutralizing activity (platelet factor 4) is released from human blood platelets by thrombin in the form of a high molecular weight proteoglycan-platelet factor 4 complex. This complex was partially purified by isoelectric precipitation and gel filtration. At high ionic strength (I = 0.75) the complex dissociates into the active component (mol. wt 29000) and the proteoglycan carrier. The components were separated by gel filtration and the proteoglycan further purified by Na2SO4 treatment. The molecular weight of the purified carrier was 59000. The carbohydrate moieties of the proteoglycan isolated after papain digestion and ion-echange chromatography were shown to consist of chondroitin 4-sulfate by chemical, physical and electrophoretic analysis. The multichain proteoglycan consists of four chondroitin 4-sulfate chains (mol. wt 12000) in covalent linkage to a single polypeptide. The molecular weight (350000) of the fully saturated proteoglycan carrier suggests that 4 moles of platelet factor 4 are bound per mole of proteoglycan and that the carrier occurs in the form of a dimer consisting of 8 moles of platelet factor 4 and 2 moles of proteoglycan. The isolated chondroitin 4-sulfate moieties combine with platelet factor 4 at a binding ratio of one mole of platelet factor 4 per carbohydrate chain. Heparin completely displaces platelet factor 4 from both the saturated proteoglycan and chondroitin 4-sulfate complexes. Heparitin sulfate, dermatan sulfate and chondroitin 6-sulfate also combine stoichiometrically with platelet factor 4 and are displaced by equimolar amounts of heparin. Hyaluronic acid did not combine with platelet factor 4. The relative binding capacities of glycosaminoglycans for platelet factor 4 were shown to be: heparin (100), heparitin sulfate (75), chondroitin 4-sulfate (50), dermatan sulfate (50), chondroitin 6-sulfate (50), and hyaluronic acid (o). Chondroitin 4-sulfate was identified as the major glycosaminoglycan in all platelet subcellular fractions; in addition, the soluble fraction contains a minor amount of hyaluronic acid. Subcellular distribution studies revealed that 55% of both the proteoglycan carrier and platelet factor 4 activity were localized in the “granule rich” fraction. This data together with the low recovery of both these components in the membrane fraction, suggest that they occur together as a complex within specific granules and are released in this form under physiologic conditions.  相似文献   

19.
An intracellular N-terminal exopeptidase isolated from cell extracts of Streptococcus durans has been purified 470-fold to homogeneity (specific activity of 12.0 μmol/min per mg). In the absence of thiol compounds, the purified aminopeptidase undergoes a slow oxidation with a 70% loss of activity, which can be restored by the addition of 2 mM β-mercaptoethanol. The purified aminopeptidase (Mr 300 000) preferred L-peptide and arylamide substrates with small nonpolar or basic side chains. SDS electrophoresis yielded a single protein band corresponding to a molecular weight of 49 400, suggesting that the native enzyme is a hexameric protein. The enzyme-catalyzed hydrolysis of L-alanyl-p-nitroanilide exhibited a bell-shaped pH dependence for log Vmax/Km(pK1 = 6.35; pK2 = 8.50) while the log Vmax versus pH profile showed only an acid limb (pK = 6.35). Methylene blue-sensitized photooxidation of the enzyme resulted in the complete loss of activity, while L-leucine, a competitive inhibitor, partially protected against this inactivation. Amino acid analysis indicated that this photooxidative loss of activity corresponded to the modification of one histidine residue per enzyme monomer. N-Ethylmaleimide (100 mM) caused a 78% reduction in enzyme activity. Treatment of the enzyme with 1.0 mM hydrogen peroxide resulted in the oxidation of two cysteine residues per enzyme monomer and caused a 70% decrease in the catalytic activity.  相似文献   

20.
Diamine oxidase from Euphorbia characias latex contains two sulfhydryl groups per mole of dimeric enzyme. The sulfhydryl groups are unreactive in the native enzyme but can be readily titrated by 4,4′-dithiodipyridine after protein denaturation, or anaerobically in the presence of the amine substrate. In the presence of both substrates (diamine and oxygen) they react sluggishly. The sulfhydryl groups show different reactivity toward various reagents, but in every case their modification inhibits catalytic activity. The insensitivity of the native enzyme to specific reagents suggests that the sulfhydryl groups are positioned in the interior of the protein and shielded from the solvent. Their reactivity in the presence of the amine substrate could be attributed to a conformational change occurring upon substrate binding or after substrate oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号