首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The aim of this study is to examine how sustained exposure to two 1,4-benzodiazepines (BZDs) with different action period, diazepam and brotizolam, and a 1,5-BZD, clobazam, affects L-type high voltage-gated calcium channel (HVCC) functions and its mechanisms using primary cultures of mouse cerebral cortical neurons. The sustained exposure to these three BZDs increased [45Ca2+] influx, which was due to the enhanced [45Ca2+] entry through L-type HVCCs but not through of Cav2.1 and Cav2.2. Increase in [3H]diltiazem binding after the exposure to these three BZDs was due to the increase in the binding sites of [3H]diltiazem. Western blot analysis showed increase of Cav1.2 and Cav1.3 in association with the increased expression of α2/δ1 subunit. Similar changes in [3H]diltiazem binding and L-type HVCC subunit expression were found in the cerebral cortex from mouse with BZD physical dependence. These results indicate that BZDs examined here have the potential to increase L-type HVCC functions mediated via the enhanced expression of not only Cav1.2 and Cav1.3 but also α2/δ1 subunit after their sustained exposure, which may participate in the development of physical dependence by these BZDs.  相似文献   

2.
Somatic angiotensin I-converting enzyme (s-ACE) plays a central role in blood pressure regulation and has been the target of most antihypertensive drugs. A displacement isothermal titration calorimetry method has been used to accurately determine the binding constant of three strong s-ACE inhibitors. Under the experimental conditions studied in this work, the relative potency of the inhibitors was determined to be enalaprilat>lisinopril>captopril. We analyze the thermodynamic behaviour of the binding process using the new structural information provided by the ACE structures, as well as the conformational changes that occur upon binding.  相似文献   

3.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

4.
To elucidate the role of acetyl-l-carnitine in the brain, we used a novel method, ‘Bioradiography,’ in which the dynamic process could be followed in living slices by use of positron-emitter labeled compounds and imaging plates. We studied the incorporation of 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) into rat brain slices incubated in oxygenated Krebs-Ringer solution. Under the glucose-free condition, [18F]FDG uptake rate decreased with time and plateaued within 350 min in the cerebral cortex and cerebellum, and the addition of 1 or 5 mM acetyl-l-carnitine did not alter the [18F]FDG uptake rate. When a glutaminase inhibitor, 0.5 mM 6-diazo-5-oxo-l-norleucine (DON), was added under the normal glucose condition, [18F]FDG uptake rate decreased. Acetyl-l-carnitine (1 mM), which decreased [18F]FDG uptake rate, reversed this DON-induced decrease in [18F]FDG uptake rate in the cerebral cortex. These results suggest that acetyl-l-carnitine can be used for the production of releasable glutamate rather than as an energy source in the brain.  相似文献   

5.
Xia HJ  Dai DZ  Dai Y 《Life sciences》2006,79(19):1812-1819
The exaggerated cardiac arrhythmias in cardiomyopathy induced by L-thyroxine treatment are related to ion channelopathies and to an abnormal endothelin (ET) pathway. It was hypothesized that an increased incidence of ventricular fibrillation (VF) could be mediated by inflammatory factors including the ET pathway, nuclear factor kappa B (NFkappaB), tumor necrosis factor-alpha (TNFalpha) and inducible nitric oxide synthase (iNOS). Abnormal expression of NFkappaB, TNFalpha, iNOS and enhanced VF are linked with the activated ET pathway and a significant reversion could be achieved by the selective endothelin A receptor antagonist darusentan. Cardiomyopathy in rats was produced by L-thyroxine treatment (0.3 mg kg(-1) d(-1), sc) for 10 days. The mRNA expression of the ET pathway, NFkappaB, TNFalpha, iNOS and the activity of the redox system were assayed in association with the incidence of VF produced by coronary ligation/reperfusion. Darusentan was administered on days 6-10 of L-thyroxine treatment. The VF incidence, which was higher in the l-thyroxine cardiomyopathy group, was suppressed by darusentan. The mRNA levels of preproET-1, endothelin converting enzyme, endothelin receptor A (ET(A)R), endothelin receptor B (ET(B)R), NFkappaB, TNFalpha and iNOS in left ventricle were up-regulated in the cardiomyopathic heart. There was significant oxidative stress in this cardiomyopathy model. Darusentan suppressed the up-regulated mRNA levels of ET(A)R, ET(B)R, NFkappaB, TNFalpha, and iNOS. These results indicate that the high incidence of VF which is related to up-regulation of inflammatory factors in the cardiomyopathic myocardium is significantly suppressed by selective ET(A)R blockade.  相似文献   

6.
Ota M  Yasuno F  Ito H  Seki C  Nozaki S  Asada T  Suhara T 《Life sciences》2006,79(8):730-736
Loss of dopamine synthesis in the striatum with normal human aging has been observed in the postmortem brain. To investigate whether there is age-associated change in dopamine synthesis in the extrastriatal brain regions similar to that in the striatum, positron emission tomography studies with (11)C-labelled l-DOPA were performed on 21 normal healthy male subjects (age range 20-67 years). Decline in the tissue fraction of gray matter per region of interest was also investigated. The overall uptake rate constant for each region of interest was quantified by the Patlak plot method using the occipital cortex as reference region. Regions of interest were set on the dorsolateral prefrontal cortex, lateral temporal cortex, medial temporal cortex, occipital cortex, parietal cortex, anterior cingulate, thalamus, midbrain, caudate nucleus, and putamen. Test-retest analysis indicated good reproducibility of the overall uptake rate constant. Significant age-related declines of dopamine synthesis were observed in the striatum and extrastriatal regions except midbrain. The decline in the overall uptake rate constant was more prominent than in the tissue fraction of gray matter. These results indicate that the previously demonstrated age-related decline in striatal dopamine synthesis extends to several extrastriatal regions in normal human brain.  相似文献   

7.
The interactions between the heme CO ligand in the oxygenase domain of nitric oxide synthase and a set of substrate analogues were determined by measuring the resonance Raman spectra of the Fe-C-O vibrational modes. Substrates were selected that have variations in all the functional units: the guanidino group, the amino acid site and the number of methylene units connecting the two ends. In comparison to the substrate free form of the enzyme, Interactions of the analogues with the CO moiety caused the Fe-CO stretching and the Fe-C-O bending modes to shift in frequency due to the electrostatic environment. An unmodified guanidino group interacted with the CO in a similar fashion despite changes in the amino acid end. However, an unmodified amino acid end is required for catalysis owing to the H-bonding network involving the substrate, the heme and the pterin cofactor.  相似文献   

8.
Coelenterazine is an imidazopyrazinone compound (3,7-dihydroimidazopyrazin-3-one structure) that is widely distributed in marine organisms and used as a luciferin for various bioluminescence reactions. We have used electrospray ionization-ion trap-mass spectrometry to investigate whether the deep-sea luminous copepod Metridia pacifica is able to synthesize coelenterazine. By feeding experiments using deuterium labeled amino acids of l-tyrosine and l-phenylalanine, we have shown that coelenterazine can be synthesized from two molecules of l-tyrosine and one molecule of l-phenylalanine in M. pacifica. This is the first demonstration that coelenterazine is biosynthesized from free l-amino acids in a marine organism.  相似文献   

9.
While studies with [(3)H]D-aspartate ([(3)H]d-Asp) illustrate specific interactions with excitatory amino acid transporters (EAATs), new insights into the pharmacological characteristics and localization of specific EAAT subtypes depend upon the availability of novel ligands. One such ligand is [(3)H]-(2S,4R)-4-methylglutamate ([(3)H]4MG) which labels astrocytic EAATs in homogenate binding studies. This study examined the utility of [(3)H]4MG for binding and autoradiography in coronal sections of rat brain. Binding of [(3)H]4MG was optimal in 5mM HEPES buffer containing 96 mM NaCl, pH 7.5. Specific binding of [(3)H]4MG exhibited two components, but was to a single site when glutamate receptor (GluR) sites were masked with kainate (KA; 1 microM): t(1/2) approximately 5 min, K(d) 250 nM and B(max) 5.4 pmol/mg protein. Pharmacological studies revealed that [(3)H]4MG, unlike [(3)H]d-Asp, labeled both EAAT and ionotropic GluR sites. Further studies employed 6-cyano-7-nitroquinoxaline (30 microM) to block GluR sites, but selective EAAT ligands displayed lower potency than expected for binding to transporters relative to drugs possessing mixed transporter/receptor activities. Autoradiography in conjunction with densitometry with [(3)H]4MG and [(3)H]d-Asp revealed wide, but discrete distributions in forebrain; significant differences in binding levels were found in hippocampus, nucleus accumbens and cortical sub-areas. Although EAAT1 and EAAT2 components were detectable using 3-methylglutamate and serine-O-sulphate, respectively, the majority of [(3)H]4MG binding was to KA-related sites. Overall, in tissue sections [(3)H]4MG proved unsuitable for studying the autoradiographic localization of EAATs apparently due to its inability to selectively discriminate Na(+)-dependent binding to Glu transporters.  相似文献   

10.
It is shown in literature that stress, such as deprivation of trophic factors and hypoxia, induces apoptosis in cultured cells and in tissues. In light of these results, we explored the possibility of protecting cells from programmed death by improving the metabolism of the mitochondrion. To this end, acetyl-L-carnitine was administered at various concentrations under conditions of serum deprivation. The choice of this drug was based on the accepted notion that acetyl-L-carnitine is able to stabilize mitochondrial membranes and to increase the supply of energy to the organelle. The results presented here indicate that the drug protects cells from apoptotic death: this is demonstrated by a lower positivity to the TUNEL reaction and by a strong reduction of the apoptotic DNA ladder in serum-deprived cells. The involvement of the mitochondrial apoptotic pathway was assessed by cytochrome C release and immunoreactivity to caspase 3. Moreover, acetyl-L-carnitine stimulates cell proliferation.  相似文献   

11.
There is increasing evidence that a functional interaction exists between interleukin-1β (IL-1β) and N-methyl-d-aspartate (NMDA) receptors. The present study attempted to elucidate the effect of IL-1β on the NMDA-induced outward currents in mechanically dissociated hippocampal neurons using a perforated patch recording technique. IL-1β (30-100 ng/ml) inhibited the mean amplitude of the NMDA-induced outward currents that were mediated by charybdotoxin (ChTX)-sensitive Ca2+-activated K+ (KCa) channels. IL-1β (100 ng/ml) also significantly increased the mean ratio of the NMDA-induced inward current amplitudes measured at the end to the beginning of a 20-s application of NMDA. In hippocampal neurons from acute slice preparations, IL-1β significantly inhibited ChTX-sensitive KCa currents induced by a depolarizing voltage-step. IL-1 receptor antagonist antagonized effects of IL-1β. These results strongly suggest that IL-1β increases the neuronal excitability by inhibition of ChTX-sensitive KCa channels activated by Ca2+ influx through both NMDA receptors and voltage-gated Ca2+ channels.  相似文献   

12.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

13.
Blockade of the renin-angiotensin system (RAS) reduces cardiovascular morbidity and mortality in diabetic patients. Ang II-mediated generation of reactive oxygen species (ROS) has been suggested to be involved in several diabetic complications. We investigated whether the inhibition of Ang II production with an ACE inhibitor (ACEi) reduces oxidative stress and limits structural cardiovascular remodeling in a rat model of streptozotocin (STZ)-induced diabetes. Diabetic rats were treated for 7 weeks with an ACEi (lisinopril, 5 mg/kg/d), an antioxidant (N-acetyl-l-cysteine (NAC), 0.5 g/kg/d) and their combination. At sacrifice, ROS in the myocardium and thoracic aorta, LV myocyte number and size and aorta morphology were determined by quantitative histological methods. Superoxide and hydroxyl radical content, detected by dihydroethidium (DHE) and 8-hydroxydeoxyguanosine (8-OHdG), were 6.7 and 4.5-fold, respectively, higher in diabetic myocardium than in non-diabetic controls (p<0.001). The amount of superoxide was 5-fold higher in the thoracic aorta of diabetic rats compared to controls (p<0.001). Diabetes caused a modest increase in myocyte volume (+13%, p<0.01), a reduction of LV myocyte number (-43%, p<0.001), an accumulation of collagen around coronary arterioles (1.9-fold increase, p<0.01) and a decrease in arterial elastin/collagen ratio (-63%, p<0.001) compared to controls. Treatment with the ACEi attenuated ROS formation and prevented phenotypic changes in the heart (cardiomyocyte hypertrophy, perivascular fibrosis) and in the aorta of diabetic rats to the same extent as NAC. The absence of an additive effect, suggests a common mechanism of action, through the reduction of oxidative stress.  相似文献   

14.
Octopine dehydrogenase [N2-(d-1-carboxyethyl)-l-arginine:NAD+ oxidoreductase] (OcDH) from the adductor muscle of the great scallop Pecten maximus catalyzes the reductive condensation of l-arginine and pyruvate to octopine during escape swimming. This enzyme, which is a prototype of opine dehydrogenases (OpDHs), oxidizes glycolytically born NADH to NAD+, thus sustaining anaerobic ATP provision during short periods of strenuous muscular activity. In contrast to some other OpDHs, OcDH uses only l-arginine as the amino acid substrate. Here, we report the crystal structures of OcDH in complex with NADH and the binary complexes NADH/l-arginine and NADH/pyruvate, providing detailed information about the principles of substrate recognition, ligand binding and the reaction mechanism. OcDH binds its substrates through a combination of electrostatic forces and size selection, which guarantees that OcDH catalysis proceeds with substrate selectivity and stereoselectivity, giving rise to a second chiral center and exploiting a “molecular ruler” mechanism.  相似文献   

15.
A putative long-chain mannitol-1-phosphate 5-dehydrogenase from Aspergillus fumigatus (AfM1PDH) was overexpressed in Escherichia coli to a level of about 50% of total intracellular protein. The purified recombinant protein was a approximately 40-kDa monomer in solution and displayed the predicted enzymatic function, catalyzing NAD(H)-dependent interconversion of d-mannitol 1-phosphate and d-fructose 6-phosphate with a specific reductase activity of 170 U/mg at pH 7.1 and 25 degrees C. NADP(H) showed a marginal activity. Hydrogen transfer from formate to d-fructose 6-phosphate, mediated by NAD(H) and catalyzed by a coupled enzyme system of purified Candida boidinii formate dehydrogenase and AfM1PDH, was used for the preparative synthesis of d-mannitol 1-phosphate or, by applying an analogous procedure using deuterio formate, the 5-[2H] derivative thereof. Following the precipitation of d-mannitol 1-phosphate as barium salt, pure product (>95% by HPLC and NMR) was obtained in isolated yields of about 90%, based on 200 mM of d-fructose 6-phosphate employed in the reaction. In situ proton NMR studies of enzymatic oxidation of d-5-[2H]-mannitol 1-phosphate demonstrated that AfM1PDH was stereospecific for transferring the deuterium to NAD+, producing (4S)-[2H]-NADH. Comparison of maximum initial rates for NAD+-dependent oxidation of protio and deuterio forms of D-mannitol 1-phosphate at pH 7.1 and 25 degrees C revealed a primary kinetic isotope effect of 2.9+/-0.2, suggesting that the hydride transfer was strongly rate-determining for the overall enzymatic reaction under these conditions.  相似文献   

16.
Melatonin and S-adenosyl-l-methionine (SAMe) prevent oxidative stress and tissue dysfunction in obstructive jaundice (OJ). Lipid peroxidation is exacerbated in the presence of trace amounts of iron (Fe). The study investigated the regulation by melatonin and SAMe the induction of oxidative stress, iron metabolism disturbances and tissue injury in an experimental model of OJ. Different parameters of lipid peroxidation, antioxidant status, tissue injury and Fe metabolism were determined in liver and blood. OJ induced Fe accumulation in liver, and increased transferrin (Tf) saturation and loosely bound Fe content in blood. Melatonin, and SAMe at lesser extent, enhanced protein Tf content in liver and blood, that reduced loosely bound Fe content in blood. Melatonin and SAMe did not affect ferritin (FT) and Tf mRNA expression, but reduced Tf receptor (TfR) mRNA expression in liver. In conclusion, the effect of melatonin and SAMe on Fe metabolism may be included in the beneficial properties of these agents on lipid peroxidation and tissue injury induced by OJ.  相似文献   

17.
We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na+-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of l-glutamate.  相似文献   

18.
In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast damped Ca2+ spikes with a period of 15 s and slower irregular spikes with a period greater than 50 s. Spikes in Ca2+ occurred in the absence of Ca2+ influx, but the amplitude was damped by inhibition of Ca2+ influx. Using the oxidation of hydroethidine as a cytosolic marker of oxidant production, we show that the generation of reactive oxygen species by neutrophils adherent to glass was accelerated by ATP. The step-up in NADPH oxidase activity followed the first elevation of cytosolic Ca2+ but, despite subsequent spikes in Ca2+ concentration, no oscillations in oxidase activity could be detected. ATP induced spikes in Ca2+ in a very reproducible way and we propose that the Ca2+ signal is an on-switch for oxidase activity, but the activity is apparently not directly correlated with spiking activity in cytosolic Ca2+.  相似文献   

19.
Non-peptide antagonists of the oxytocin receptor (OTR) have been developed to prevent pre-term labour. The benzoxazinone-based antagonists L-371,257 and L-372,662 display pronounced species-dependent pharmacology with respect to selectivity for the OTR over the V(1a) vasopressin receptor. Examination of receptor sequences from different species identified Ala(318) in helix 7 of the human OTR as a candidate discriminator required for high affinity binding. The mutant receptor [A318G]OTR was engineered and characterised using ligands representing many different chemical classes. Of all the ligands investigated, only the benzoxazinone-based antagonists had decreased affinity for [A318G]OTR. Molecular modelling revealed that Ala(318) provides a direct hydrophobic contact with a methoxy group of L-371,257 and L-372,662.  相似文献   

20.
The anaerobically inducible L-serine dehydratase, TdcG, from Escherichia coli was characterized. Based on UV-visible spectroscopy, iron and labile sulfide analyses, the homodimeric enzyme is proposed to have two oxygen-labile [4Fe-4S]2+ clusters. Anaerobically isolated dimeric TdcG had a kcat of 544 s(-1) and an apparent KM for L-serine of 4.8 mM. L-threonine did not act as a substrate for the enzyme. Exposure of the active enzyme to air resulted in disappearance of the broad absorption band at 400-420 nm, indicating a loss of the [4Fe-4S]2+ cluster. A concomitant loss of dehydratase activity was demonstrated, indicating that integrity of the [4Fe-4S]2+ cluster is essential for enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号