首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
Chronic lead exposure induces hypertension and alters endothelial function. However, treatment with low lead concentrations was not yet explored. We analyzed the effects of 7 day exposure to low lead concentrations on endothelium-dependent responses. Wistar rats were treated with lead (1st dose 4 μg/100 g, subsequent dose 0.05 μg/100 g, i.m. to cover daily loss) or vehicle; blood levels attained at the end of treatment were 9.98 μg/dL. Lead treatment had the following effects: increase in systolic blood pressure (SBP); reduction of contractile response to phenylephrine (1 nM-100 μM) of aortic rings; unaffected relaxation induced by acetylcholine (0.1 nM-300 μM) or sodium nitroprusside (0.01 nM-0.3 μM). Endothelium removal, N(G)-nitro-L-arginine methyl ester (100 μM) and tetraethylammonium (2 mM) increased the response to phenylephrine in treated rats more than in untreated rats. Aminoguanidine (50 μM) increased but losartan (10 μM) and enalapril (10 μM) reduced the response to phenylephrine in treated rats. Lead treatment also increased aortic Na(+)/K(+)-ATPase functional activity, plasma angiotensin-converting enzyme (ACE) activity, protein expression of the Na(+)/K(+)-ATPase alpha-1 subunit, phosphorylated endothelial nitric oxide synthase (p-eNOS), and inducible nitric oxide synthase (iNOS). Our results suggest that on initial stages of lead exposure, increased SBP is caused by the increase in plasma ACE activity. This effect is accompanied by increased p-eNOS, iNOS protein expression and Na(+)/K(+)-ATPase functional activity. These factors might be a compensatory mechanism to the increase in SBP.  相似文献   

2.
The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress.  相似文献   

3.
Experiments were designed to investigate the influence of steady flow and pressure on endothelial function in the rabbit carotid artery. Increases and decreases in isometric force were compared in static rings and perfused (5 or 50 ml/min) segments of the same arteries in the presence and absence of endothelium. The alpha(1)-adrenoceptor agonist phenylephrine and the muscarinic agonist acetylcholine were applied as vasoconstrictor and vasodilator stimuli, respectively. Continuous flow (5 and 50 ml/min) reduced the cGMP content and shifted the concentration-response curve to phenylephrine to the left compared with nonperfused static rings. Removal of the endothelium abolished the differences in cGMP content and the sensitivity to phenylephrine between static rings and perfused segments. No difference in sensitivity to phenylephrine was observed in tissues treated with N(omega)-nitro-l-arginine methyl ester (l-NAME). Acetylcholine-evoked relaxations were increased in perfused segments. l-NAME nearly abolished the acetylcholine-evoked relaxation in static rings, whereas about one-half of the relaxation remained in segments exposed to flow. This remnant relaxation was blocked by inhibition of endothelial small- and intermediate-conductance calcium-activated potassium channels by apamin plus 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34). These experiments demonstrate that continuous flow increases the constriction evoked by alpha(1)-adrenergic activation in the rabbit carotid artery through a reduced influence of basally released endothelial NO and, furthermore, that luminal flow unmasks an ability of the endothelium to release a non-NO, noncyclooxygenase vasodilator, presumably endothelium-derived hyperpolarizing factor.  相似文献   

4.
To assess the functional change in adenylyl cyclases (AC) associated with the diabetic state, we investigated AC-mediated relaxations and cAMP production in mesenteric arteries from rats with streptozotocin (STZ)-induced diabetes. The relaxations induced by the water-soluble forskolin (FSK) analog NKH477, which is a putative AC5 activator, but not by the beta-adrenoceptor agonist isoproterenol (Iso) and the AC activator FSK, were reduced in intact diabetic mesenteric artery. In diabetic rats, however, Iso-, FSK-, and NKH477-induced relaxations were attenuated in the presence of inhibitors of nitric oxide synthase and cyclooxygenase. To exclude the influence of phosphodiesterase (PDE), we also examined the relaxations induced by several AC activators in the presence of 3-isobutyl-1-methylxanthine (IBMX; a PDE inhibitor). Under these conditions, the relaxation induced by Iso was greatly impaired in STZ-diabetic rats. This Iso-induced relaxation was significantly attenuated by pretreatment with SQ-22536, an AC inhibitor, in mesenteric rings from age-matched controls but not in those from STZ-diabetic rats. Under the same conditions, the relaxations induced by FSK or NKH477 were impaired in STZ-diabetic rats. Neither FSK- nor A-23187 (a Ca2+ ionophore)-induced cAMP production was significantly different between diabetics and controls. However, cAMP production induced by Iso or NKH477 was significantly impaired in diabetic mesenteric arteries. Expression of mRNAs and proteins for AC5/6 was lower in diabetic mesenteric arteries than in controls. These results suggest that AC-mediated relaxation is impaired in the STZ-diabetic rat mesenteric artery, perhaps reflecting a reduction in AC5/6 activity.  相似文献   

5.
《Life sciences》1996,58(9):PL147-PL152
Endothelial dysfunction is known to occur in chemically-induced animal models of diabetes. The BB diabetic rat is a genetic diabetes-prone model which more closely resembles Type I diabetes mellitus. In this study, we examined the role of Superoxide anion radical and cyclooxygenase activity on endothelial dysfunction in aorta of the spontaneous diabetic BB rat. Vascular endothelial function was studied in vitro in aortic rings from 8-wk diabetic rats and agematched nondiabetic littermates. There was no alteration in reactivity to norepinephrine as a result of diabetes. Relaxation to acetylcholine (but not nitroglycerin) was impaired in diabetic rings. Relaxation to acetylcholine was abolished by 100 μM L-nitroarginine but unaltered by an equimolar concentration of aminoguanidine (an inducible nitric oxide synthase inhibitor) in both control and diabetic rings. Incubation with 10 μM indomethacin did not alter relaxation to acetylcholine in either control or diabetic rings. In contrast, addition of 20 U/ml Superoxide dismutase enhanced relaxation to acetylcholine in diabetic rings but had no effect on relaxation to acetylcholine in control rings. Thus, nitric oxide-mediated, endothelium-dependent relaxation is diminished in aortic rings of the genetic diabetic BB rat. Furthermore, Superoxide anion radicals but not cyclooxygenase products play an important role in endothelial dysfunction in this genetic diabetic model.  相似文献   

6.
Pomolic acid has recently shown hypotensive effect in rats. The purpose of this investigation was to determine the vascular effects of this triterpenoid and to examine its mode of action. Functional experiments in rat aortic rings precontracted with norepinephrine were performed to evaluate the vasorelaxant effect of pomolic acid. This triterpenoid induced a vasorelaxation (IC50 = 2.45 μM) in a concentration- and endothelium-dependent manner and showed no effect on contractions evoked by KCl (25 mM). Pre-treatment of aortic rings with l-NAME (100 μM), methylene blue (100 μM) or glibenclamide (10 μM), totally prevented the vasorelaxation induced by pomolic acid, while indomethacin (10 μM) had no effect on this response. Additionally, pomolic acid relaxation was unaffected under the muscarinic- and β-adrenergic-receptor blocked ensured for atropine and propanolol respectively (10 μM each). In contrast, the vasorelaxant effect of pomolic acid was abolished under the purinergic-receptor blocked ensured for suramin (10 μM). Finally, apyrase (0.8 U/ml) an enzyme which hydrolyses ATP and ADP did not affect pomolic acid relaxation. In summary, pomolic acid has a potent endothelium-dependent vasorelaxant effect, possibly acting through the direct activation of endothelial purinergic receptors via NO-cGMP signaling pathway, which could be part of the mechanism underlying its hypotensive effect.  相似文献   

7.
We previously reported that in mesenteric arteries from aged Otsuka Long-Evans Tokushima fatty (OLETF) rats (a type 2 diabetes model) endothelium-derived hyperpolarizing factor (EDHF)-type relaxation is impaired while endothelium-derived contracting factor (EDCF)-mediated contraction is enhanced (Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K. Am J Physiol Heart Circ Physiol 293: H1480-H1490, 2007). Here we investigated whether acute and/or chronic treatment with metformin might improve this imbalance between the effects of the above endothelium-derived factors in mesenteric arteries isolated from OLETF rats. In acute studies on OLETF mesenteric arteries, ACh-induced relaxation was impaired and the relaxation became weaker at high ACh concentrations. Both metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside [AICAR, an AMP-activated protein kinase (AMPK) activator that is also activated by metformin] 1) diminished the tendency for the relaxation to reverse at high ACh concentrations and 2) suppressed both ACh-induced EDCF-mediated contraction and ACh-stimulated production of prostanoids (thromboxane A2 and PGE2). In studies on OLETF arteries from chronically treated animals, metformin treatment (300 mg.kg(-1).day(-1) for 4 wk) 1) improved ACh-induced nitric oxide- or EDHF-mediated relaxation and cyclooxygenase (COX)-mediated contraction, 2) reduced EDCF-mediated contraction, 3) suppressed production of prostanoids, and 4) reduced superoxide generation. Metformin did not alter the protein expressions of endothelial nitric oxide synthase (eNOS), phospho-eNOS (Ser1177), or COX-1, but it increased COX-2 protein. These results suggest that metformin improves endothelial functions in OLETF mesenteric arteries by suppressing vasoconstrictor prostanoids and by reducing oxidative stress. Our data suggest that within the timescale studied here, metformin improves endothelial function through this direct mechanism, rather than by improving metabolic abnormalities.  相似文献   

8.
Lactoferrin (LF) is a multifunctional protein that is found in milk, neutrophils, and other biological fluids. Under inflammatory conditions, LF production is increased in the periphery by neutrophils. However, the cardiovascular function of LF is still unknown. In the present study, we investigated the effect of bovine LF (BLF) on the mean blood pressure (MBP) and heart rate (HR) in urethane-anesthetized rats and the vascular function of BLF in the rat thoracic aorta. Intravenous injection of BLF produced dose-dependent decreases in MBP but did not affect HR, while the opioid agonist morphine decreased both MBP and HR. The hypotensive effect of BLF was not altered by naloxone methiodide, which cannot pass through the blood-brain barrier, but was significantly reduced by naloxone hydrochloride, which does pass through the blood-brain barrier. BLF-induced hypotension was completely blocked by the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) but not by the inactive enantiomer of l-NAME, NG-nitro-d-arginine methyl ester (d-NAME). BLF-induced hypotension was not altered by the muscarinic ACh receptor antagonist atropine or the cyclooxygenase inhibitor diclofenac. BLF produced relaxation in endothelium-intact but not endothelium-denuded aortic rings precontracted with phenylephrine. The relaxation evoked by BLF was completely blocked by l-NAME but not by d-NAME or the ATP-sensitive potassium channel blocker glibenclamide. These results suggest that BLF causes hypotension via an endothelium-dependent vasodilation that is strongly mediated by NO production and that BLF-induced hypotension also may be mediated by the central opioidergic system.  相似文献   

9.
AimsMetformin is an insulin sensitizing agent with beneficial effects in diabetic patients on glycemic levels and in the cardiovascular system. We examined whether the metabolic changes and the vascular dysfunction in monosodium glutamate-induced obese non-diabetic (MSG) rats might be improved by metformin.Main methods16 week-old MSG rats were treated with metformin for 15 days and compared with age-matched untreated MSG and non-obese non-diabetic rats (control). Blood pressure, insulin sensitivity, vascular reactivity and prostanoid release in the perfused mesenteric arteriolar bed as well as nitric oxide production and reactive oxygen species generation in isolated mesenteric arteries were analyzed.Key findings18-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia, insulin resistance and hyperinsulinemia. Metformin treatment improved these alterations. The norepinephrine-induced response, increased in the mesenteric arteriolar bed from MSG rats, was corrected by metformin. Indomethacin corrected the enhanced contractile response in MSG rats but did not affect metformin effects. The sensitivity to acetylcholine, reduced in MSG rats, was also corrected by metformin. Indomethacin corrected the reduced sensitivity to acetylcholine in MSG rats but did not affect metformin effects. The sensitivity to sodium nitroprusside was increased in preparations from metformin-treated rats. Metformin treatment restored both the reduced PGI2/TXA2 ratio and the increased reactive oxygen species generation in preparations from MSG rats.SignificanceMetformin improved the vascular function in MSG rats through reduction in reactive oxygen species generation, modulation of membrane hyperpolarization, correction of the unbalanced prostanoids release and increase in the sensitivity of the smooth muscle to nitric oxide.  相似文献   

10.
Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model.  相似文献   

11.
The incidence of hypertension increases during the late stages of aging; however, the vascular mechanisms involved are unclear. We investigated whether the late stages of aging are associated with impaired nitric oxide (NO)-mediated vascular relaxation and enhanced vascular contraction and whether oxidative stress plays a role in the age-related vascular changes. Aging (16 mo) male spontaneously hypertensive rats (SHR) nontreated or treated for 8 mo with the antioxidant tempol (1 mM in drinking water) or vitamin E (E; 5,000 IU/kg chow) and vitamin C (C; 100 mg. kg-1. day-1 in drinking water) and adult (12 wk) male SHR were used. After the arterial pressure was measured, aortic strips were isolated from the rats for measurement of isometric contraction. The arterial pressure and phenylephrine (Phe)-induced vascular contraction were enhanced, and the ACh-induced vascular relaxation and nitrite/nitrate production were reduced in aging compared with adult rats. In aging rats, the arterial pressure was nontreated (188 +/- 4), tempol-treated (161 +/- 6), and E + C-treated (187 +/- 1 mmHg). Phe (10-5 M) caused an increase in active stress in nontreated aging rats (14.3 +/- 1.0) that was significantly (P < 0.05) reduced in tempol-treated (9.0 +/- 0.7) and E + C-treated rats (9.8 +/- 0.6 x 104 N/m2). ACh produced a small relaxation of Phe contraction in nontreated aging rats that was enhanced (P < 0.05) in tempol- and E + C-treated rats. l-NAME (10-4 M), inhibitor of NO synthase, or ODQ (10-5 M), inhibitor of cGMP production in smooth muscle, inhibited ACh relaxation and enhanced Phe contraction in tempol- and E + C-treated but not the nontreated aging rats. ACh-induced vascular nitrite/nitrate production was not different in nontreated, tempol- and E + C-treated aging rats. Relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was smaller in aging than adult rats but was not different between nontreated, tempol- and E + C-treated aging rats. Thus, during the late stages of aging in SHR rats, an age-related inhibition of a vascular relaxation pathway involving not only NO production by endothelial cells but also the bioavailability of NO and the smooth muscle response to NO is partially reversed during chronic treatment with the antioxidants tempol and vitamins E and C. The data suggest a role for oxidative stress in the reduction of vascular relaxation and thereby the promotion of vascular contraction and hypertension during the late stages of aging.  相似文献   

12.
The effect of sex hormones on vascular reactivity is considered one of the underlying factors contributing to gender differences in cardiovascular functions and diseases. Experiments were designed to investigate the role of androgens in salt-induced hypertension by assessing the relaxation response of isolated aortic rings to acetylcholine and sodium nitroprusside in the presence or absence of l-nitroarginine methyl ester in Sprague-Dawley rats. The rats were either orchidectomized or sham-operated, with or without testosterone replacement, and were placed on a normal or high-salt diet for 6?weeks. The results indicate a significant increase (p?< 0.001) in the mean arterial blood pressure of rats on the high-salt diet, when compared with control or orchidectomized rats. Orchidectomy elicited a reduction in mean arterial blood pressure (p?< 0.01), while testosterone replacement normalized mean arterial blood pressure to values seen in intact rats on the high-salt diet. The high-salt diet reduced the relaxation response to acetylcholine both in the presence and absence of inhibition of endothelial nitric oxide synthase with l-nitroarginine methyl ester. Bilateral orchidectomy attenuated the impaired endothelial function induced by the high-salt diet in rats, but this was reversed by concomitant administration of testosterone, suggesting a role for androgens in enhancing long-term vascular smooth muscle tone and hence maintenance of high blood pressure in salt-induced hypertension.  相似文献   

13.
The present study was designed to evaluate endothelium-dependent relaxation to the calcium ionophore A-23187 in isolated canine saphenous veins. Isometric force recordings and cGMP measurements using isolated veins with and without valves were performed. During contractions to U-46619 (3 x 10(-7) M), endothelium-dependent relaxations to A-23187 (10(-9)-10(-6) M) were significantly reduced in rings with valves compared with rings without valves. Endothelial removal abolished A-23187-induced relaxation. Relaxations to forskolin (FK; 10(-8)-10(-5) M) and diethylaminodiazen-1-ium-1,2-dionate; DEA-NONOate, 10(-9)-10(-5) M) were identical in rings with and without valves. In rings without valves, a nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 3 x 10(-4) M), and a cyclooxygenase inhibitor, indomethacin (10(-5) M), partially reduced A-23187-induced relaxation. However, in rings with valves, L-NAME had no effect, whereas indomethacin abolished the relaxation to A-23187. A selective soluble guanylate cyclase inhibitor, 1H-[1,2,4]-oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 3x10(-6) M), had no effect on the relaxation to A-23187 in either group. In contrast, ODQ abolished the A-23187-induced increase in cGMP levels, suggesting that relaxation to nitric oxide released by A-23187 is independent of increases in cGMP. These results demonstrate that endothelium-dependent relaxation to A-23187 is reduced in regions of veins with valves compared with relaxation in the nonvalvular venous wall. Lower production of nitric oxide in endothelial cells of valvular segments appears to be a mechanism responsible for reduced reactivity to A-23187.  相似文献   

14.
Metformin is widely used in clinic for handling the diabetic disorders. However, action mechanisms of metformin remain obscure. It has recently been indicated that guanidinium derivatives are ligands to activate type-2 imidazoline receptors (I-2 receptors) that can improve diabetes through increment in skeletal muscle glucose uptake. Also, activation of I-2 receptors can increase the release of ?-endorphin in diabetic animals. Because metformin is a guanidinium derivative, we were interested in the effect of metformin on I-2 receptors. In the present study, the marked blood glucose-lowering action of metformin in streptozotocin-induced type-1 like diabetes rats was blocked by specific I-2 receptor antagonist, BU224, in a dose-dependent manner. Also, the increase of ?-endorphin release by metformin was blocked by BU224 in same manner. A specific competition between metformin and BU224 was observed in isolated adrenal medulla. Otherwise, amiloride at the dose sufficient to block I-2A receptor abolished the metformin-induced ?-endorphin release, but only the blood glucose-lowering action of metformin was markedly reduced. In addition, the blood glucose-lowering action of metformin in bilateral adrenalectomized rats was diminished by amiloride at higher doses. These results suggest that metformin might activate imidazoline I-2 receptors while I-2A receptors link the increase of ?-endorphin release and I-2B receptors couple to the other actions for lowering of blood glucose in type-1 like diabetic rats.  相似文献   

15.
We investigated the relationship between the changes in vascular responsiveness and growth factor mRNA expressions induced by 1-wk treatment with high-dose insulin in control and established streptozotocin (STZ)-induced diabetes. Aortas from diabetic rats, but not those from insulin-treated diabetic rats, showed impaired endothelium-dependent relaxation in response to ACh (vs. untreated controls). The ACh-induced nitrite plus nitrate (NOx) level showed no significant difference between controls and diabetics. Insulin treatment increased NOx only in diabetics. In diabetics, insulin treatment significantly increased the aortic expressions of endothelial nitric oxide synthase (eNOS) mRNA and VEGF mRNA. The expression of IGF-1 mRNA was unaffected by diabetes or by insulin treatment. In contrast, the mRNA for the aortic IGF-1 receptor was increased in diabetics and further increased in insulin-treated diabetics. In aortic strips from age-matched control rats, IGF-1 caused a concentration-dependent relaxation. This relaxation was significantly stronger in strips from STZ-induced diabetic rats. These results suggest that in STZ-diabetic rats, short-term insulin treatment can ameliorate endothelial dysfunction by inducing overexpression of eNOS and/or VEGF mRNAs possibly via IGF-1 receptors. These receptors were increased in diabetes, perhaps as result of insulin deficiency.  相似文献   

16.
In mammals, IGFs are important for the proliferation and steroidogenesis of ovarian cells. Metformin is an insulin sensitizer molecule used for the treatment of the infertility of women with polycystic ovary syndrome. It is, however, unclear whether metformin acts on ovarian cells. Adenosine 5' monophosphate-activated protein kinase (AMPK) is involved in metformin action in various cell types. We investigated the effects of metformin on bovine granulosa cell steroidogenesis in response to IGF1 and FSH, and studied AMPK in bovine ovaries. In granulosa cells from small follicles, metformin (10 mM) reduced production of both progesterone and estradiol and decreased the abundance of HSD3B, CYP11A1, and STAR proteins in presence or absence of FSH (10(-8) M) and IGF1 (10(-8) M). In cows, the different subunits of AMPK are expressed in various ovarian cells including granulosa and theca cells, corpus luteum, and oocytes. In bovine granulosa cells from small follicles, metformin, like AICAR (1 mM) a pharmaceutical activator of AMPK, increased phosphorylation of both Thr172 of AMPK alpha and Ser 79 of ACACA (Acetyl-CoA Carboxylase). Both metformin and AICAR treatment reduced progesterone and estradiol secretion in presence or absence of FSH and IGF1. Metformin decreased phosphorylation levels of MAPK3/MAPK1 and MAPK14 in a dose- and time-dependent manner. The adenovirus-mediated production of dominant negative AMPK abolished the effects of metformin on secretion of progesterone and estradiol and on MAPK3/MAPK1 phosphorylation but not on MAPK14 phosphorylation. Thus, in bovine granulosa cells, metformin decreases steroidogenesis and MAPK3/MAPK1 phosphorylation through AMPK activation.  相似文献   

17.
A close relationship between oxidative stress, endothelial dysfunction, and hypoadiponectinemia has been observed. The present study was performed to investigate how glutathione depletion via buthionine sulfoximine (BSO) administration affects endothelial function and adiponectin levels in rats. Acetylcholine (Ach)-induced vasodilation was significantly enhanced in BSO-treated rats, compared with control rats. This was completely abolished by L-NAME, and Ach-induced vasodilation was not observed in the aorta without endothelium. These results suggest that Ach-induced hyper-relaxation of the aorta in BSO-treated rats is completely dependent on the presence of endothelium and mediated by changes in eNOS activity. Catalase significantly inhibited this relaxation to Ach and no effect of catalase on sodium nitroprusside-induced relaxation of the aorta without endothelium was observed in BSO-treated rats. Thus, hyper-relaxation of the aorta in BSO-treated rats is likely caused by H2O2 in addition to NO produced by the endothelium via an eNOS-dependent mechanism. Hypoadiponectinemia and decreased levels of adiponectin mRNA in adipose tissue were observed in BSO-treated rats. Protein expression of eNOS and SODs (SOD-1 and SOD-2) in the aorta was increased and plasma NOx levels were decreased in BSO-treated rats. Our results suggest that oxidative stress induced by BSO causes eNOS uncoupling and hyper-relaxation by producing H2O2, and that BSO-induced oxidative stress causes hypoadiponectinemia, probably by increasing H2O2 production in adipose tissue.  相似文献   

18.
Rho-kinase-mediated vasoconstriction and endothelial dysfunction are considered two primary instigators of pulmonary arterial hypertension (PAH). However, their contribution to the adverse changes in pulmonary blood flow distribution associated with PAH has not been addressed. This study utilizes synchrotron radiation microangiography to assess the specific role, and contribution of, Rho-kinase-mediated vasoconstriction and endothelial dysfunction in PAH. Male adult Sprague-Dawley rats were injected with saline (Cont-rats) or monocrotaline (MCT-rats) 3 wk before microangiography was performed on the left lung. We assessed dynamic changes in vessel internal diameter (ID) in response to 1) the Rho-kinase inhibitor fasudil (10 mg/kg iv); or 2) ACh (3 μg · kg?1 · min?1), sodium nitroprusside (SNP, 5 μg · kg?1 · min?1), and N(ω)-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg iv). We observed that MCT-rats had fewer vessels of the microcirculation compared with Cont-rats. The fundamental result of this study is that fasudil improved pulmonary blood flow distribution and reduced pulmonary pressure in PAH rats, not only by dilating already-perfused vessels (ID > 100 μm), but also by restoring blood flow to vessels that had previously been constricted closed (ID < 100 μm). Endothelium-dependent vasodilation was impaired in MCT-rats primarily in vessels with an ID < 200 μm. Moreover the vasoconstrictor response to l-NAME was accentuated in MCT-rats, but only in the 200- to 300-μm vessels. These results highlight the importance of Rho-kinase-mediated control and endothelial control of pulmonary vascular tone in PAH. Indeed, an effective therapeutic strategy for treating PAH should target both the smooth muscle Rho-kinase and endothelial pathways.  相似文献   

19.
《Life sciences》1993,52(4):PL37-PL42
The role of the endothelium was evaluated in the relaxation of rat and guinea pig aortic rings induced by ascorbic acid. Ascorbic acid relaxed rat and guinea pig aortic rings that were previously contracted with submaximal dose of phenylephrine (PE), in a concentration dependent manner. Removal of the endothelium significantly reduced the sensitivity but not the magnitude of the response to ascorbic acid. Methylene blue, but not propranolol, blocked the endothelial augmentation of vascular relaxation to ascorbic acid. Vessels precontracted with potassium chloride (high K+ were also relaxed by ascorbic acid. Methylene blue also inhibited the response to ascorbic acid in the intact vessels precontracted with high K+. A23187 and acetylcholine, but not ADP, variably caused endothelium dependent component relaxation in guinea pigs, whereas all of these three probes constantly caused it. In Ca2+-free medium, Ca2+-induced contraction of high K+-depolarized rat aorta was inhibited by the presence of ascorbate, which was more pronounced in endothelium intact rings than in endothelium denuded ones. PE-induced contraction in the presenced of different concentrations of ascorabte reduced both the sensitivity and the maximal contractile force in rat aorta. Ascorbic acid (0.125-32 mM) did not change the pH in the medium. From these findings, it is speculated that 1) receptor- and potential-operated Ca2+ channeld may be modulated by ascorbate, 2) endothelium has a significant role in promoting relaxation induced by ascorbic acid.  相似文献   

20.
Cistus ladaniferus L. (Cistaceae) is a medicinal plant originated from the Mediterranean region which exerts different pharmacological effects. In the present study, our goal was to examine whether the plant possessed antihypertensive properties. Aqueous extract of Cistus leaves (AEC, 500 mg/kg/day) reduced systemic blood pressure (SBP) in two animal models of hypertension, the l-NAME and renovascular two kidney-one clip (2K-1C) hypertensive rats. In the former, AEC prevented the increase in SBP when co-administered with l-NAME during four weeks (164 ± 3 mm Hg in l-NAME vs. 146 ± 1 mm Hg in l-NAME + AEC, p < 0.001). In the latter, AEC reversed the increase in SBP when administered during four weeks after installation of the hypertension (146 ± 5 mm Hg with AEC vs. 179 ± 6 mm Hg without, < 0.05). AEC treatment also reversed the endothelial dysfunction observed in both animal models of hypertension. A direct effect on cardiac and vascular tissue was also tested by examining the contractile effects of AEC in rat isolated aortic rings and Langendorff perfused hearts. AEC (10 mg/L) had no effect on left ventricular developed pressure and heart rate in isolated perfused heart. However, AEC produced a strong relaxation of pre-contracted rat aortic rings (80 ± 2% relaxation, n = 25). When the rings were denuded from endothelium or were incubated with 1 mM Nω-nitro-l-arginine (l-NNA), the relaxant effect of AEC was lost. We conclude that C. ladaniferus possesses antihypertensive properties which are mainly due to an endothelium-dependent vasodilatory action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号