首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to cross-link [125I]iodo-azido-phosphatidylserine (125I-N3-PS) to the putative 32-kDa aminophospholipid transporter of human red blood cells (RBC) has been examined by SDS-PAGE. In the absence of transport inhibitors, 125I-N3-PS preferentially labeled the 32-kDa polypeptide, whereas treatment of the cells with pyridyldithioethylamine (PDA), a potent inhibitor of the aminophospholipid translocase, abrogated the association of the probe to this protein. ATP-depletion, low temperature, and diamide or 5,5'-dithiobis(2-nitrobenzoic acid), inhibitors that oxidize an endofacial sulfhydryl distinct from the PDA-sensitive site (Connor, J. and Schroit, A.J. (1990) Biochemistry 29, 37-43), also blocked association of the PS analogue to the protein. Once 125I-N3-PS became associated with the transporter, however, only PDA was able to partially displace it. These data suggest that sulfhydryl reactive reagents inhibit PS transport by blocking the association of PS with its transporter, a process that is also ATP- and temperature-dependent.  相似文献   

2.
Endogenous phosphatidylserine (PS) exposure and lipid transport activity have been investigated for seven unrelated cases of Rhnull erythrocytes. Endogenous PS exposure was measured by prothrombinase activity. Out of six cases studied, two Rhnull samples exhibited abnormal aminophospholipid exposure, as suggested by the measurement of a lower Km of factor Xa for prothrombin. Aminophospholipid translocase activity was measured through the transbilayer redistribution of spin-labelled analogues of phospholipids. Provided that incubation conditions allow the maintainance of intracellular ATP level, no difference was observed between Rhnull and control erythrocytes, clearly indicating that the aminophospholipid translocase and Rh polypeptides are different molecular species.  相似文献   

3.
A model is presented to simulate transverse lipid movement in the human erythrocyte membrane. The model is based on a system of differential equations describing the time-dependence of phospholipid redistribution and the steady state distribution between the inner and outer membrane monolayer. It takes into account several mechanisms of translocation: (i) ATP-dependent transport via the aminophospholipid translocase; (ii) protein-mediated facilitated and (iii) carrier independent transbilayer diffusion. A reasonable modelling of the known lipid asymmetry could only be achieved by introducing mechanism (iii). We have called this pathway the compensatory flux, which is proportional to the gradient of phospholipids between both membrane leaflets. Using realistic model parameters, the model allows the calculation of the transbilayer motion and distribution of endogenous phospholipids of the human erythrocyte membrane for several biologically relevant conditions. Moreover, the model can also be applied to experiments usually performed to assess phospholipid redistribution in biological membranes. Thus, it is possible to simulate transbilayer motion of exogenously added phospholipid analogues in erythrocyte membranes. Those experiments have been carried out here in parallel using spin labeled lipid analogues. The general application of this model to other membrane systems is outlined.Abbreviations PBS phosphate buffered saline - DFP diisopropyl fluorophosphate - ESR electron spin resonance - RBC red blood cells - PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - SM sphingomyelin - (0,2)PC 1-palmitoyl-2(4doxylpentanoyl)-PC - (0,2)PE 1-palmitoyl-2(4-doxylpentanoyl)-PE - (0,2) PS 1-palmitoyl-2(4-doxylpentanoyl)-PS  相似文献   

4.
We have synthesized radioiodinated photoactivatable phosphatidylcholine (125I-N3-PC) and phosphatidylserine (125I-N3-PS). After incubation with red blood cells in the dark, the labeled PC could be extracted but not the corresponding PS molecule, indicating that the latter was transported by the aminophospholipid translocase, but not the former. When irradiated immediately after incorporation, N3-PS, but not N3-PC, partially blocked subsequent translocation of spin-labeled aminophospholipids. Analysis of probe distribution by SDS-polyacrylamide gel electrophoresis revealed that 125I-N3-PS labeled seven membrane bound components with molecular masses between 140 and 27 kDa: one (or several) of these components should correspond to the aminophospholipid translocase.  相似文献   

5.
The transbilayer movement of fluorescent and isotopically labeled analogs of phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) from the outer to the inner leaflet (flip) and from the inner to the outer leaflet (flop) of human red blood cells (RBC) was examined. The inward movement of 1-oleoyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole-aminocaproyl)- (C6-NBD-), 1-oleoyl-2-(N-(3-(3-[125I]iodo-4-hydroxyphenyl)propionyl)aminocaproyl)- (C6-125I-), or 1-oleoyl-2-(N-(3-3-[125I]iodo-4-azido-phenyl)propionyl)aminocaproyl- (C6-125I-N3-) analogs of PC and PE were relatively slow. In contrast, all analogs of PS and PE analogs containing aminododecanoic acid (C12 lipids) were rapidly transported to the cell's inner leaflet. Analysis of 125I-N3 lipids cross-linked to membrane proteins revealed labeling of 32-kDa Rh polypeptides that was dependent on the lipid's capacity to be transported to the inner leaflet but was independent of lipid species. To investigate whether lipids could also be transported from the inner to the outer leaflet, lipid probes residing exclusively in the inner leaflet were monitored for their appearance in the outer leaflet. Lipid movement could not be detected at 0 degrees C. At 37 degrees C, however, approximately 70% of the PC, 40% of the PE, and 15% of the PS redistributed to the cells outer leaflet, thereby attaining their normal asymmetric distribution. Continuous incubation in the presence of bovine serum albumin depleted the cells of the analogs (t1/2 approximately 1.5 h) in a manner that was independent of lipid species. Similar to the inward movement of aminophospholipids, the outward movement of PC, PE, and PS was ATP-dependent and could be blocked by oxidation of membrane sulfhydryls and by the histidine reagent bromophenacyl bromide. Evidence is presented which suggests that the outward movement of lipids is an intrinsic property of the cells unrelated to compensatory mechanisms due to an imbalance in lipid distribution.  相似文献   

6.
By a combined kinetic and thermodynamic model on the transbilayer dynamics and asymmetric distribution of lipids in the red blood cell, compensating lipid fluxes to the exoplasmic leaflet have been analysed, counterbalancing the active transport of aminophospholipids to the cytoplasmic monolayer by the aminophospholipid translocase. The compensating fluxes are assumed to be of passive nature generated by forces of lateral mechanical stress and of lipid concentration differences between the two monolayers. These forces are shown to be caused and maintained by the operation of the aminophospholipid translocase. Simulations reveal that a reduction of the compensating fluxes upon ATP-depletion can be attributed to the inhibition of the aminophospholipid translocase. Thus, a Mg(2+)- and ATP-dependence of the outward movement of phospholipid analogues in the plasma membrane of red blood cells can be expected independent of the existence and operation of an ATP-dependent 'floppase' activity.  相似文献   

7.
Cholesterol is known to affect several membrane functions, including membrane susceptibility to oxidative stress. In order to gain a better understanding of the relationship between cholesterol contents, structural integrity, and degree of survival in oxidatively stressed erythrocytes, here we analyzed the transbilayer phospholipid distribution, the morphology, and the degree of clearance observed in cholesterol-modified (enriched or depleted) and unmodified (control) erythrocytes exposed to tert-butylhydroperoxide. We report that the modification of cholesterol contents in erythrocytes promotes the externalization of phosphatidylserine (PS) to the membrane surface, which is consistent with a concomitant inhibition of aminophospholipid translocase (APLT) and an increased uptake of modified erythrocytes by macrophages. Moreover, cholesterol depletion modifies the transbilayer aminophospholipid distribution induced by oxidative stress to a great extent, significantly increasing PS externalization, which is associated with the strongest decrease in APLT activity. The loss of normal PS asymmetry is positively correlated with enhanced phagocytosis, and an increase in echinocyte forms is observed in all oxidized erythrocytes. We envisage that PS externalization could be due, at least in part, to the decrease in APLT activity induced by oxidative stress, the activity of which is also dependent on membrane cholesterol contents.  相似文献   

8.
The regulated loss of plasma membrane phosphatidylserine (PS) asymmetry is critical to many biological processes. In particular, the appearance of PS at the cell surface, a hallmark of apoptosis, prepares the dying cell for engulfment and elimination by phagocytes. While it is well established that PS externalization is regulated by activation of a calcium-dependent phospholipid scramblase activity in concert with inactivation of the aminophospholipid translocase, there is no evidence indicating that these processes are triggered and regulated by apoptotic regulatory mechanisms. Using a novel model system, we show that PS externalization is inducible, reversible, and independent of cytochrome c release, caspase activation, and DNA fragmentation. Additional evidence is presented indicating that the outward movement of plasma membrane PS requires sustained elevation in cytosolic Ca2+ in concert with inactivation of the aminophospholipid translocase and is inhibited by calcium channel blockers.  相似文献   

9.
The normal asymmetric distribution of phospholipids across the plasma membrane of erythrocytes can be abolished by lysing and resealing cells in the presence of Ca2+. In the present study, using flow cytometric analysis of the binding of merocyanine 540 to monitor transbilayer phospholipid distribution, Ca(2+)-induced loss of asymmetry is shown to be independent from the aminophospholipid translocase which catalyzes movement of normally internal phospholipids from the outer to the inner leaflet of the membrane. Loss of asymmetry is rapid, temperature-sensitive, and occurs in an uninterrupted, intact bilayer, rather than by diffusion of lipids through the hemolytic pore. Addition of ATP during lysis reverses loss of asymmetry, and this restoration can be blocked by inhibitors of the aminophospholipid translocase. These results suggest that the ATP-dependent translocase is essential for recovery of asymmetry, in turn suggesting that separate mechanisms mediate the loss and the recovery of lipid asymmetry in erythrocytes.  相似文献   

10.
Söling A  Simm A  Rainov N 《FEBS letters》2002,519(1-3):153-158
Recognition signals are displayed on the cell surface during apoptosis that enable macrophages to engulf and dispose of the dying cell. A common signal is the externalization of phosphatidylserine (PS). Studies in erythrocytes and platelets have suggested that PS exposure requires the concomitant activation of a phospholipid scramblase (PLS) and inhibition of an adenosine triphosphate (ATP)-dependent aminophospholipid translocase. However, the molecular mechanism underlying PS exposure during apoptosis remains poorly understood. In this study, we provide evidence that expression of PLS is neither necessary nor sufficient for PS exposure during Fas-triggered apoptosis. On the other hand, egress of PS is shown to correlate with a decline in intracellular ATP and inhibition of aminophospholipid translocase activity upon Fas stimulation. Moreover, suppression of intracellular ATP levels by the glucose anti-metabolite, 2-deoxyglucose, alone or in combination with glucose-free medium, potentiates Fas-induced PS exposure in the PLS-expressing Jurkat cell line and enables PLS-defective Raji cells to externalize PS in response to Fas ligation. These studies suggest that intracellular ATP levels can modulate the externalization of PS during apoptosis, and implicate the ATP-dependent aminophospholipid translocase in this process.  相似文献   

11.
During apoptosis, phosphatidylserine (PS) is moved from the plasma membrane inner leaflet to the outer leaflet where it triggers recognition and phagocytosis of the apoptotic cell. Although the mechanisms of PS appearance during apoptosis are not well understood, it is thought that declining activity of the aminophospholipid translocase and calcium-mediated, nonspecific flip-flop of phospholipids play a role. As previous studies in the erythrocyte ghost have shown that polyamines can alter flip-flop of phospholipids, we asked whether alterations in cellular polyamines in intact cells undergoing apoptosis would affect PS appearance, either by altering aminophospholipid translocase activity or phospholipid flip-flop. Cells of the human leukemic cell line, HL-60, were incubated with or without the ornithine decarboxylase inhibitor, difluoromethylornithine (DFMO), and induced to undergo apoptosis by ultraviolet irradiation. Whereas DFMO treatment resulted in profound depletion of putrescine and spermidine (but not spermine), it had no effect on caspase activity, DNA fragmentation, or plasma membrane vesiculation, typical characteristics of apoptosis. Notably, DFMO treatment prior to ultraviolet irradiation did not alter the decline in PS inward movement by the aminophospholipid translocase as measured by the uptake of 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminocaproyl] (NBD)-labeled PS detected in the flow cytometer. Conversely, the appearance of endogenous PS in the plasma membrane outer leaflet detected with fluorescein isothiocyanate-labeled annexin V and enhanced phospholipid flip-flop detected by the uptake of 1-palmitoyl-1-[6-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)aminocaproyl]-sn-glycero-3-phosphocholine (NBD-PC) seen during apoptosis were significantly inhibited by prior DFMO treatment. Importantly, replenishment of spermidine, by treatment with exogenous putrescine to bypass the metabolic blockade by DFMO, restored both enhanced phospholipid flip-flop and appearance of PS during apoptosis. Such restoration was seen even in the presence of cycloheximide but was not seen when polyamines were added externally just prior to assay. Taken together, these data show that intracellular polyamines can modulate PS appearance resulting from nonspecific flip-flop of phospholipids across the plasma membrane during apoptosis.  相似文献   

12.
Electric field pulses >2-3 kV cm1 long known to induce membrane poration and fusion of erythrocytes as well as to enhance the transbilayer mobility of phospholipids and to perturb aminophospholipid asymmetry, are shown to induce, at 0 C., transformation of the discocytic cells into echinocytes and spheroechinocytes. The extent of transformation increases with strength, duration and number of pulses. Its time course is biphasic., a major rapid phase (t/2 ~ 5 s) being followed by a minor one, lasting for 2-3 h. Shape transformation goes along with the exofacial exposure of phosphatidylserine (PS), detected by FITC-annexin V binding and quantified by a calibration curve established via externally inserted dilauroylphosphatldylserine. Incubation of these echinocytes at 37 C leads to a rapid recovery of the discocytic shape followed by slower formation of stomatocytes. Shape recovery is temperature dependent (Ea ~100 kJ/mol), and can be impaired by depletion of ATP or Mg++ and by addition of vanadate or fluoride. Shape recovery and stomatocyte formation go along with a rapid loss of annexin binding in about 45% of the cells while the rest maintains its binding capacity. In the presence of vanadate, annexin binding increases in all cells. The results are discussed in the light of the bilayer couple concept of erythrocyte shape and the enhanced transverse mobility of phospholipids. Echinocyte formation is most likely caused by the reorientation of endofacial aminopho-spholipids to the outer leaflet of the bilayer. Shape recovery and stomatocyte formation probably result from a continuous reinternalization of PS via the ATP dependent aminophospholipid translocase, but may also be supported by downhill movement of PC to the inner leaflet and by other yet unidentified processes.  相似文献   

13.
The content of phosphatidylserine (PS) was found to be increased three times in the plasma membrane outer leaflet of ras-transformed fibroblasts compared to their nontransformed counterparts. In an attempt to determine the mechanisms responsible for the enhanced external appearance of PS, we investigated the activities of aminophospholipid translocase and the nonspecific lipid scramblase. Both transport systems could separately or in combination contribute to PS accumulation in the extracellular leaflet. Aminophospholipid transfer was assessed by measuring the rate of NBD-PS internalization, and scramblase activity was estimated from the internalization of NBD-PC. The results showed that the aminophospholipid transport was inhibited and the nonspecific transport was stimulated in ras-transformed cells. To assess which of these two transport systems was related to elevation of PS external appearance, each of them was submitted to reversible alterations and the content of PS was measured simultaneously. Aminophospholipid translocase activity was inhibited by pyridyldithioethylamine treatment and reversed by reduction with dithiothreitol. Scramblase activity was modulated by a calcium repletion-depletion procedure. Calcium depletion was performed by cell incubation with BAPTA-AM and EGTA as Ca2+ intracellular and extracellular chelators. Restoration of the intracellular Ca2+ was achieved by cell incubation with Ca2+ and Ca2+-ionophore A23187. The results showed that the changes in PS outer appearance did not correlate with the uptake of NBD-PS but were closely related to NBD-PC internalization, suggesting that the nonspecific bidirectional lipid transfer was the major transport system translocating PS to the outer leaflet in ras-transformed cells.  相似文献   

14.
Lipid translocation across the plasma membrane of mammalian cells.   总被引:25,自引:0,他引:25  
The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of the major functions of the plasma membrane, each of which requires participation of specific membrane proteins and/or lipids. It is therefore not surprising that the two leaflets of the membrane bilayer each have their specific lipid composition. Although membrane lipid asymmetry has been known for many years, the mechanisms for maintaining or regulating the transbilayer lipid distribution are still not completely understood. Three major players have been presented over the past years: (1) an inward-directed pump specific for phosphatidylserine and phosphatidylethanolamine, known as aminophospholipid translocase; (2) an outward-directed pump referred to as 'floppase' with little selectivity for the polar headgroup of the phospholipid, but whose actual participation in transport of endogenous lipids has not been well established; and (3) a lipid scramblase, which facilitates bi-directional migration across the bilayer of all phospholipid classes, independent of the polar headgroup. Whereas a concerted action of aminophospholipid translocase and floppase could, in principle, account for the maintenance of lipid asymmetry in quiescent cells, activation of the scramblase and concomitant inhibition of the aminophospholipid translocase causes a collapse of lipid asymmetry, manifested by exposure of phosphatidylserine on the cell surface. In this article, each of these transporters will be discussed, and their physiological importance will be illustrated by the Scott syndrome, a bleeding disorder caused by impaired lipid scrambling. Finally, phosphatidylserine exposure during apoptosis will be briefly discussed in relation to inhibition of translocase and simultaneous activation of scramblase.  相似文献   

15.
Smriti  Nemergut EC  Daleke DL 《Biochemistry》2007,46(8):2249-2259
The plasma membrane of most cells contains a number of lipid transporters that catalyze the ATP-dependent movement of phospholipids across the membrane and assist in the maintenance of lipid asymmetry. The most well-characterized of these transporters is the erythrocyte aminophospholipid flippase, which selectively transports phosphatidylserine (PS) from the outer to the inner monolayer. Previous work has demonstrated that PS and to a lesser extent phosphatidylethanolamine (PE) are substrates for the flippase and that other phospholipids move across the membrane only by passive flip-flop. The present study re-evaluates these results. The incorporation and transbilayer movement of a number of short-chain (dilauroyl) phospholipid analogues in human erythrocytes was measured by observing lipid-induced changes in cell morphology, and the effect of an ATPase inhibitor (vanadate) and a sulfyhdryl reagent (N-ethylmaleimide) was determined. Incubation of cells with these lipids causes the rapid formation of echinocytes, because of the accumulation of the lipid in the outer monolayer. While dilauroylphosphatidylcholine-treated cells retained this shape, cells treated with sn-1,2-DLP-l-S, sn-1,2-DLP-d-S, or N-methyl-DLPS rapidly changed morphology to stomatocytes, which is consistent with the transport and accumulation of the lipid in the inner monolayer. A similar, although slower, stomatocytic shape change was induced by sn-2,3-DLP-l-S. Other lipids that were tested (dilauroylphosphatidylhydroxypropionate, dilauroylphosphatidylhomoserine, DLPS-methyl ester, or sn-2,3-DLP-d-S) reverted to discocytes only. In all cases, pretreatment with vanadate or N-ethylmaleimide inhibited the conversion of echinocytes to discocytes or stomatocytes. This is the first report of a protein- and energy-dependent pathway for the inwardly directed transbilayer movement of lipids other than PS and PE in the erythrocyte membrane and suggests that the flippase has broader specificity for substrates or that other lipid transporters are present.  相似文献   

16.
Numb regulates endocytosis in many metazoans, but the mechanism by which it functions is not completely understood. Here we report that the Caenorhabditis elegans Numb ortholog, NUM-1A, a regulator of endocytic recycling, binds the C isoform of transbilayer amphipath transporter-1 (TAT-1), a P4 family adenosine triphosphatase and putative aminophospholipid translocase that is required for proper endocytic trafficking. We demonstrate that TAT-1 is differentially spliced during development and that TAT-1C-specific splicing occurs in the intestine where NUM-1A is known to function. NUM-1A and TAT-1C colocalize in vivo. We have mapped the binding site to an NXXF motif in TAT-1C. This motif is not required for TAT-1C function but is required for NUM-1A's ability to inhibit recycling. We demonstrate that num-1A and tat-1 defects are both suppressed by the loss of the activity of PSSY-1, a phosphatidylserine (PS) synthase. PS is mislocalized in intestinal cells with defects in tat-1 or num-1A function. We propose that NUM-1A inhibits recycling by inhibiting TAT-1C's ability to translocate PS across the membranes of recycling endosomes.  相似文献   

17.
We have investigated a female patient with autoerythrocyte sensitization syndrome (AES syndrome), having a positive skin response to her own red blood cells (RBC) and to phosphatidylserine (PS). Using 2,4,6-trinitrobenzenesulfonic acid (TNBS), bee venom phospholipase A2 and merocyanine 540 binding, we have demonstrated that in RBC of patient more than 50% of PS is redistributed into the outer leaflet of the plasma membrane. Using homologous RBC from a healthy donor we were able to induce transbilayer PS redistribution by incubation with the patient plasma. The presence of immunoglobulin E against cardiolipin and PS was proved in patient's plasma. We elaborated a method for cytoskeleton visualization using indirect immunofluorescence technique. We found disorders in cytoskeleton organization in RBC of the patient. We recommend in vitro testing for AES syndrome diagnosis. The positive effect of chlorpromazine treatment is described.  相似文献   

18.
Selective oxidation of phosphatidylserine (PS) during apoptosis precedes its externalization in plasma membrane and is essential for the engulfment of apoptotic cells. To experimentally test whether PS oxidation stimulates its externalization via its effects on aminophospholipid translocase (APT) or by enhanced PS scrambling, action of oxidized PS (PSox) was studied using leukemia HL-60 cells and lymphoma Raji cells. Both PS and PSox were equally well recognized by APT. PSox did not inhibit APT. Rate of transmembrane PS diffusion was fourfold higher in cells with integrated PSox than with PS. Thus, PSox acts as a "non-enzymatic scramblase" likely contributing to PS externalization.  相似文献   

19.
The molecule responsible for the enzyme activity plasma membrane (PM) aminophospholipid translocase (APLT), which catalyzes phosphatidylserine (PS) translocation from the outer to the inner leaflet of the plasma membrane, is unknown in mammals. A Caenorhabditis elegans study has shown that ablation of transbilayer amphipath transporter-1 (TAT-1), which is an ortholog of a mammalian P-type ATPase, Atp8a1, causes PS externalization in the germ cells. We demonstrate here that the hippocampal cells of the dentate gyrus, and Cornu Ammonis (CA1, CA3) in mice lacking Atp8a1 exhibit a dramatic increase in PS externalization. Although their hippocampi showed no abnormal morphology or heightened apoptosis, these mice displayed increased activity and a marked deficiency in hippocampus-dependent learning, but no hyper-anxiety. Such observations indicate that Atp8a1 plays a crucial role in PM-APLT activity in the neuronal cells. In corroboration, ectopic expression of Atp8a1 but not its close homolog, Atp8a2, caused an increase in the population (V(max) ) of PM-APLT without any change in its signature parameter K(m) in the neuronal N18 cells. Conversely, expression of a P-type phosphorylation-site mutant of Atp8a1 (Atp8a1*) caused a decrease in V(max) of PM-APLT without significantly altering its K(m) . The Atp8a1*-expressing N18 cells also exhibited PS externalization without apoptosis. Together, our data strongly indicate that Atp8a1 plays a central role in the PM-APLT activity of some mammalian cells, such as the neuronal N18 and hippocampal cells.  相似文献   

20.
Spin labeled phospholipid analogs were used to directly study changes in aminophospholipid translocase activity in activated platelets. In thrombin-activated platelets, the translocase activity was slightly stimulated, whereas no vesicle formation or proteolysis of cytoskeletal protein occurred. Ca2+ ionophore A23187-mediated activation produced vesiculation and proteolysis. Additionally, the translocase activity was completely inhibited, probably due to a sharp rise the intracellular Ca2+ concentration, as shown when platelets were activated in the presence of various A23187 and Ca2+ concentrations and by the recovery of the translocase activity when Ca2+ was complexed with EGTA. No translocase activity was found in vesicles. Whereas vesiculation and translocase inhibition can occur independently of proteolysis, this later accentuated the shedding phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号