首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We constructed and tested a series of regression models of intraspecific competition in Ratibida columnifera (Asteraceae), based on the growth and water use of individual plants. Models were constructed from a set of plants ("model") grown without competition under three watering regimes. Each model was then tested on another set of plants ("test") grown, singly or in pairs, under two watering regimes, one of them different than those of the "model" plants. Both sets of plants were grown simultaneously. Models that used only estimates of plant dry mass (ISON [interval by interval size only], and SON [size only]) were outperformed (i.e., the difference between predicted values of final dry mass and their true values were larger on average) by models that incorporated direct measures of water uptake and usage (ISAW [interval by interval size and water], WON [water only], SAW [size and water]). Harvest biomass predictions given by these three last models deviated from values of true biomass by an average of only 6.1%.  相似文献   

4.
Dispersal and breeding system traits are thought to affect colonization success. As species have attained their present distribution ranges through colonization, these traits may vary geographically. Although several theories predict associations between dispersal ability, selfing ability and the relative position of a population within its geographic range, there is little theoretical or empirical consensus on exactly how these three variables are related. We investigated relationships between dispersal ability, selfing ability and range position across 28 populations of 13 annual, wind‐dispersed Asteraceae species from the Namaqualand region of South Africa. Controlling for phylogeny, relative dispersal ability – assessed from vertical fall time of fruits – was positively related to an index of autofertility – determined from hand‐pollination experiments. These findings support the existence of two discrete syndromes: high selfing ability associated with good dispersal and obligate outcrossing associated with lower dispersal ability. This is consistent with the hypothesis that selection for colonization success drives the evolution of an association between these traits. However, no general effect of range position on dispersal or breeding system traits was evident. This suggests selection on both breeding system and dispersal traits acts consistently across distribution ranges.  相似文献   

5.
The ecological role of interference competition through toxin production is not well understood. In particular, it is unclear under what conditions the benefits of toxic killing outweigh the metabolic costs involved. A killer advantage has been suggested to rely on local competitive interactions where the benefits of killing accrue to the toxin producer preferentially, but this notion has little empirical support. In addition, contrasting predictions exist about the effect of resource abundance on the benefits of toxin production; this benefit should either be highest when resources are abundant and metabolic costs are relatively low or when resources are scarce and toxic killing is a 'last resort strategy' to obtain nutrients. Here, we test these predictions for one aspect of competitive ability, that is, the ability of toxin producers to invade a population of sensitive non-producers from a low initial frequency. We use competition experiments between isogenic K1 toxin-producing and non-producing strains of Saccharomyces cerevisiae, where we manipulate dispersal under two extreme nutrient conditions: one environment with and the other without replenishment of nutrients. We find that toxin production is beneficial when dispersal is limited under both nutrient conditions, but only when resources are abundant these outweigh its cost and allow invasion of the producer.  相似文献   

6.
7.
A great deal is known about the influence of dispersal on species that interact via competition or predation, but very little is known about the influence of dispersal on species that interact via both competition and predation. Here, I investigate the influence of dispersal on the coexistence and abundance-productivity relationships of species that engage in intraguild predation (IGP: competing species that prey on each other). I report two key findings. First, dispersal enhances coexistence when a trade-off between resource competition and IGP is strong and/or when the Intraguild Prey has an overall advantage, and impedes coexistence when the trade-off is weak and/or when the Intraguild Predator has an overall advantage. Second, the Intraguild Prey's abundance-productivity relationship depends crucially on the dispersal rate of the Intraguild Predator, but the Intraguild Predator's abundance-productivity relationship is unaffected by its own dispersal rate or that of the Intraguild Prey. This difference arises because the two species engage in both a competitive interaction as well as an antagonistic (predator-prey) interaction. The Intraguild Prey, being the intermediate consumer, has to balance the conflicting demands of resource acquisition and predator avoidance, while the Intraguild Predator has to contend only with resource acquisition. Thus, the Intraguild Predator's abundance increases monotonically with resource productivity regardless of either species' dispersal rate, while the Intraguild Prey's abundance-productivity relationship can increase, decrease, or become hump-shaped with increasing productivity depending on the Intraguild Predator's dispersal rate. The important implication is that a species' trophic position determines the effectiveness of dispersal in sampling spatial environmental heterogeneity. The dispersal behavior of a top predator is likely to have a stronger effect on coexistence and spatial patterns of abundance than the dispersal behavior of an intermediate consumer.  相似文献   

8.
Abstract Competition is a major aspect of the ecology of insect communities exploiting ephemeral and fragmented resources. We analysed the effect of intraspecific (single species culture) and interspecific (mixed species culture) competition on larval viability, developmental time and wing length in the cactophilic Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) reared in cultured media prepared with fermenting tissues of three common natural cactus hosts in nature at different densities. Our results show that all traits measured were affected by both intra‐ and interspecifc competition, although the effect of competition depended on the Drosophila species and the rearing cactus. In fact, flies tended to have a lower viability, shorter wing size and longer developmental time as a function of increasing density in single species culture in both D. buzzatii and D. koepferae (intraespecific competition). Besides, the performance of both species was seriously affected (shorter body size, slower developmental times, lower viability) by the presence of heterospecific competitors except in the case of D. koepferae reared in its primary host plant, Trichocereus terschekii. We also show that D. koepferae successfully utilized Opuntia quimilo, which is absent in most parts of its distribution range. We discuss the roles of intra‐ and interspecific competition as determinants of the relative abundance of these two species in the arid zones of Southern South America.  相似文献   

9.
10.
Native tree populations have been fragmented by anthropogenic disturbance worldwide, leaving them at risk from extinction. The possibility of sizable recovery of fragmented populations is a function of their dispersal, the abiotic conditions, and the biotic interactions. The relative importance of these three drivers for the recruitment rate of a fragmented population of the late-successional Fagus sylvatica L. was analysed at the landscape scale in Causse du Larzac, southern margins of the Massif Central, in the South of France. We used regression models on observational data to analyse the response of Fagus recruitment rate to the distance to the nearest mature population, to climatic and geological variables, and to variables describing biotic interactions (pine vs. grassland, light, shrub cover). Distance to the nearest F. sylvatica adult population was the most important explanatory variable. Recruitment rate was also influenced by facilitative biotic interactions with shrubs, and by the climatic conditions of the plot. Recruitment occurred at a greater distance from the nearest mature population of Fagus in pine forests than in grassland. Dispersal was the major limitation to recruitment of F. sylvatica in this landscape. The recruitment rate was then modulated by the climate and positive biotic interactions. The activity of the European jay could be of great importance for such fragmented populations, because it can lead to long-distance dispersal events and may result in a preferential dispersal towards pine forests.  相似文献   

11.
Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (He, Ar) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high Fst values. The landscape connectivity analysis at the regional scale, including isolation by distance, least‐cost path and cost‐weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species.  相似文献   

12.
Using microsatellites, we investigated population structure and gene flow of the short-lived, wind-dispersed plant species Hypochaeris radicata in a fragmented agricultural landscape where more than 99% of the nutrient-poor grasslands have disappeared over the last century. We sampled populations in the few remaining high density populations in conservation areas, as well as individuals that occurred, with lower densities, in linear landscape elements, at two spatial scales. In a re-inventory of the landscape, after 3 years, both extinctions and colonizations of populations were observed. Contrary to expectations, no differences in genetic diversity between high and low density populations were observed. Both types of populations had relatively high levels of diversity. Overall genetic differentiation (theta) was 0.04 and significantly different from zero (P < 0.01). A significant isolation-by-distance pattern was found when all populations were simultaneously analysed (r = 0.24, P = 0.013). Isolation by distance was (marginally) significant at the small scale (r = 0.32, P = 0.06), whereas nonsignificant at the large spatial scale (r = -0.05, P = 0.66). A maximization-of-explained-variance procedure resulted in a threshold distance of 3.5 km above which populations were effectively genetically isolated. An additional partial exclusion Bayesian-based assignment test showed that overall 32.3% of the individuals were assigned to their population of origin, 48% were assigned to another population in the area and 19.7% were not assigned. Together, these results suggest high levels of gene flow. Seed dispersal contributes to the observed gene flow up to several hundred metres, which is higher than previously modelled using aerodynamic models on seed dispersal of H. radicata. We discuss the consequences of these results for an evaluation of the probability of persistence of this species in the fragmented landscape.  相似文献   

13.
Relative competitive ability and growth characteristics of the narrow endemic Solidago shortii were compared to those of the geographically widespread S. altissima. Competition and growth studies were conducted over the entire growing season in an ambient-temperature greenhouse, using a 3:1 (v/v) native limestone soil/river sand mixture. Results from a de Wit replacement series experiment (relative yield, relative yield total, plant height, aggressivity values) with S. shortii, S. altissima, and Festuca arundinacea (common competitor) suggested the following competitive hierarchy: S. altissima = F. arundinacea > S. shortii. Using classical growth analysis, we found that the competitive hierarchy was related closely to components of plant size (dry mass, height, leaf area, leaf area duration) and not to relative growth rate or any of its components (net assimilation rate, leaf area ratio, leaf weight ratio, specific leaf area). Solidago shortii allocated proportionately more dry mass to roots (but not to rhizomes) and had significantly greater root/shoot and (root + rhizome)/shoot ratios than did S. altissima. Thus, while the morphological traits of S. shortii enable it to tolerate drier habitats than S. altissima, in moist sites S. shortii easily would be overtopped and shaded out by S. altissima. Low competitive ability may be one of several factors contributing to the narrow endemism of S. shortii.  相似文献   

14.
Understanding how landscape structure influences biodiversity patterns and ecological processes are essential in ecological research and conservation practices. Forest discontinuity is a primary driver affecting the population persistence and genetic structure of forest‐dwelling species. However, the actual impacts on populations are highly species‐specific. In this study, we tested whether dispersal capability and host specialization are associated with susceptibility to forest discontinuity using three closely related, sympatric fungivorous ciid beetle species (two host specialists, Octotemnus assimilis and O. crassus; one host generalist, O. kawanabei). Landscape genetic analyses and the estimation of effective migration surfaces (EEMS) method consistently demonstrated contrasting differences in the relationships between genetic structure and configuration of forest land cover. Octotemnus assimilis, one of the specialists with a presumably higher dispersal capability due to lower wing loading, lacked a definite spatial genetic structure in our study landscape. The remaining two species showed clear spatial genetic structure, but the results of landscape genetic analyses differed between the two species: while landscape resistance appeared to describe the spatial genetic structure of the specialist O. crassus, genetic differentiation of the generalist O. kawanabei was explained by geographic distance alone. This finding is consistent with the prediction that nonforest areas act more strongly as barriers between specialist populations. Our results suggest that differences in host range can influence the species‐specific resistance to habitat discontinuity among closely related species inhabiting the same landscape.  相似文献   

15.
16.
The factors influencing cancer susceptibility and why it varies across species are major open questions in the field of cancer biology. One underexplored source of variation in cancer susceptibility may arise from trade-offs between reproductive competitiveness (e.g. sexually selected traits, earlier reproduction and higher fertility) and cancer defence. We build a model that contrasts the probabilistic onset of cancer with other, extrinsic causes of mortality and use it to predict that intense reproductive competition will lower cancer defences and increase cancer incidence. We explore the trade-off between cancer defences and intraspecific competition across different extrinsic mortality conditions and different levels of trade-off intensity, and find the largest effect of competition on cancer in species where low extrinsic mortality combines with strong trade-offs. In such species, selection to delay cancer and selection to outcompete conspecifics are both strong, and the latter conflicts with the former. We discuss evidence for the assumed trade-off between reproductive competitiveness and cancer susceptibility. Sexually selected traits such as ornaments or large body size require high levels of cell proliferation and appear to be associated with greater cancer susceptibility. Similar associations exist for female traits such as continuous egg-laying in domestic hens and earlier reproductive maturity. Trade-offs between reproduction and cancer defences may be instantiated by a variety of mechanisms, including higher levels of growth factors and hormones, less efficient cell-cycle control and less DNA repair, or simply a larger number of cell divisions (relevant when reproductive success requires large body size or rapid reproductive cycles). These mechanisms can affect intra- and interspecific variation in cancer susceptibility arising from rapid cell proliferation during reproductive maturation, intrasexual competition and reproduction.  相似文献   

17.
Experimental measurements were made in the laboratory to determine the swimming capacities of settlement-stage fish larvae of several Mediterranean coastal species collected from the nearshore waters of Corsica, France. Critical swimming speed (Ucrit, cm s−1) was measured to provide a realistic laboratory estimate of in situ swimming speed. Morphometric traits were measured to assess potential predictors of a species’ swimming ability and, when possible, daily otolith increments were used to estimate age. Observed swimming speeds were consistent with other temperate species and demonstrated that the tested species are competent swimmers and not passive components of their environment. Morphological traits varied in their correlation with Ucrit across groups and species. Direct measurements of morphological traits were better predictors than calculated ratios. Pelagic larval duration had little relationship with swimming speed among species for which daily otolith increments were counted. In addition to expanding the database on swimming capacities of settlement-stage fish larvae in the Mediterranean Sea, this study also developed methods that simplify the assessment of larval fish swimming ability. Swimming speed data are essential for improving larval dispersal models and for predicting recruitment rates in coastal fish populations.  相似文献   

18.
Interfertile populations of the seed beetle Callosobruchus maculatus differ genetically in several behavioral, morphological, and life-history traits, including traits that affect the intensity of larval competition within seeds. Previous studies have suggested that this variation depends on differences in host size. I performed a selection experiment in which replicate beetle lines were either maintained on a small, ancestral host (mung bean) or switched to a larger, novel host (cowpea). After 40 generations, I estimated survival, development time, and adult mass on each host, both in the presence and absence of larval competition. The shift to cowpea substantially reduced body size; irrespective of rearing host, adults from the cowpea lines were more than 10% lighter than those from the mung bean lines. Switching to cowpea also improved survival and reduced development time on this host, but without decreasing performance on the ancestral host. The most striking effect of the shift to a larger host was a reduction in larval competitiveness. When two even-aged larvae co-existed within a seed, the probability that both survived to adult emergence was > or = 65% if larvae were from the cowpea lines but < or = 12% if they were from the mung bean lines. The adverse effects of competition on development time and adult mass were also less severe in the cowpea lines than in the mung bean lines. By rapidly evolving smaller size and reduced competitiveness, the cowpea lines converged toward populations chronically associated with cowpea. These results suggest that evolutionary trajectories can be predictable, and that host-specific selection can play a major role in the diversification of insect life histories. Because host shifts by small, endophagous insects are comparable to the colonization of new habitats, adaptive responses may often include traits (such as larval competitiveness) that are not directly related to host use.  相似文献   

19.
In many groups of organisms the location of settling is determined by competition, and fitter individuals tend to settle closer to their natal territory than less fit ones. In this work we study the implications of this phenomenon to the problem of adaptation and speciation on a rugged adaptive landscape. One consequence of fitness-associated dispersal (FAD) is that individuals with high fitness are more likely to experience inbreeding, especially with other fit individuals. Another consequence is that when dispersal is costly, the less fit individuals are more likely to pay the cost. When a rare and advantageous allelic combination appears, FAD may increase its chances to spread in the population. In a two-locus two-alleles model with negative epistasis, we find that FAD significantly shortens the waiting time for an adaptive peak shift in comparison with random dispersal.  相似文献   

20.
Classical life-history theory predicts ‘trade-offs’ between reproductive and somatic investments. However, empirical studies have shown that intraspecific phenotypic correlations between these two resource investments are often positive or nonsignificant, rather than negative as predicted. The model of Van Noordwijk and De Jong (1986) was proposed to explain these unexpected results. According to their model, positive correlations between reproductive and somatic investments will result if individual variation in resource acquisition exceeds that of resource allocation, whereas negative correlations will result if individual variation in resource allocation exceeds that of resource acquisition. To test this model, I used body storage/condition as an index of somatic investment because it is usually strongly related to level of resource acquisition. I predicted that laboratory studies should more often show negative correlations between reproductive and somatic investments than field studies, because individual variation in resource acquisition is expected to be lower in controlled laboratory environments than in variable natural environments. A literature review revealed that correlations between somatic (storage) investment and reproductive investment (estimated as clutch/litter mass, number of offspring per clutch/litter, or number of clutches/litters) among conspecific breeding female animals are more often positive (15 species) or nonsignificant (17 species) than negative (6 species). Moreover, as expected, five of six negative correlations were observed in laboratory studies, whereas 13 of 15 positive correlations were observed in field studies. It is concluded that future empirical and theoretical work on life histories should consider individual variation in both resource acquisition and allocation and the interaction between the two. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号