首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the signalling pathways responsible for the Ang II induction of growth in MCF-7 human breast cancer cells. Ang II in MCF-7 cells induced: (a) the translocation from the cytosol to membrane and nucleus of atypical protein kinase C-zeta (PKC-zeta) but not of PKC-alpha, -delta, - epsilon and -eta; (b) the expression of c-fos mRNA and protein; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). All these effects were due to the activation of the Ang II type I receptor (AT1) since they were blocked by the AT1 antagonist losartan. The Ang II-stimulated ERK1/2 phosphorylation was blocked by (a) high doses of staurosporine, inhibitor of PKC-zeta, and by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS); (b) PD098059, a mitogen-activated protein kinase kinase inhibitor (MAPKK/MEK); and, moreover, (c) the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin, thus indicating that PI3K may act upstream of ERK1/2. The Ang II-evoked c-fos induction was blocked only by high doses of staurosporine and by zeta-PS whilst PD098059, LY294002 and wortmannin were ineffective, thus indicating that c-fos induction is not due to ERK1/2 activity. When the epidermal growth factor-receptor (EGFR) tyrosine kinase activity was inhibited by the use of its inhibitor AG1478, Ang II was still able to induce ERK1/2 phosphorylation and c-fos expression, therefore proving that the transactivation of EGFR was not required for these Ang II effects in MCF-7 cells. The previously reported proliferation of MCF-7 cells induced by Ang II was blocked by PD098059 and by wortmannin in a dose-dependent manner, thereby indicating that in MCF-7 cells the PI3K and ERK pathways mediate the mitogenic signalling of AT1. Our results suggest that in MCF-7 cells Ang II activates multiple signalling pathways involving PKC-zeta, PI3K and MAPK; of these pathways only PKC-zeta appears responsible for the induction of c-fos.  相似文献   

2.
17Beta-estradiol (E2) induces proliferation and c-fos gene expression in MCF-7 cells and both responses are partially blocked by wortmannin and LY294002 which are inhibitors of phosphatidylinositol-3-kinase (PI3-K). Analysis of the c-fos gene promoter shows that the effects of wortmannin and LY294002 are associated with inhibition of E2-induced activation through the serum response factor (SRF) motif within the proximal serum response element at -325 and -296. E2 activates constructs containing multiple copies of the SRF (pSRF) and a GAL4-SRF fusion protein; these responses are accompanied by PI3-K-dependent phosphorylation of Akt and inhibited by wortmannin/LY294002, the antiestrogen ICI 182780, but not by the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD98059. Using a series of kinase inhibitors and dominant negative kinase expression plasmids, it was shown that the non-genomic activation of SRF by E2 was associated with src-ras-PI3-K pathway, thus, demonstrating hormonal activation of the SRE through src-ras activation of both PI3-K- and MAPK-dependent signaling pathways.  相似文献   

3.
Protein phosphorylation plays an indispensable role in cellular regulation of mitosis, metabolism, differentiation, and death. We previously reported that the protein phosphatase inhibitor okadaic acid (OKA) induces apoptosis in renal epithelial cells in culture. In the present study, we examined the role of phosphotidylinositol 3 (PI3) kinase signaling in okadaic acid-induced apoptosis by pre-treating normal rat kidney renal epithelial cells expressing human bcl-2 with the PI3 kinase inhibitors, LY294002 and wortmannin, followed by apoptosis-inducing concentrations of okadaic acid. Given the reported cell survival activity of PI3 kinase signaling mostly attributed to Akt kinase activation, we hypothesized that inhibition of PI3 kinase would enhance okadaic-induced apoptosis. Surprisingly, our data show that pretreatment with LY294002, but not wortmannin, attenuated okadaic acid-induced apoptosis. In contrast, to LY294002, wortmannin enhanced apoptosis. Interestingly, we also found that LY294002 treatment increased bcl-2 protein levels in normal rat kidney epithelial cells expressing bcl-2 (NRK-bcl-2). In untreated cells, bcl-2 appeared to be mainly perinuclear, coincident with the nuclear membrane, or in the cytosol. In OKA treated cells that were pre-treated with Ly294002, bcl-2 was highly co-localized with mitochondria, but in cells treated with okadaic acid alone, bcl-2 was associated with fragmented chromatin. In this model, it appears that LY294002 may exert anti-apoptotic effects by a previously unreported treatment related increase in bcl-2. Although it is widely accepted that bcl-2 protein can inhibit apoptosis, we propose that the subcellular location of bcl-2 is an important determinant in whether bcl-2 effectively inhibits apoptosis.  相似文献   

4.
The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases 1 and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by G?6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G?6976 and PD098059, or G?6976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G?6976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC- epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC- epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC- epsilon pathways to induce c-Fos protein and HeLa cell proliferation.  相似文献   

5.
In the present study, we investigated the role of GLUT-1 and PI3K/Akt signaling in radioresistance of laryngeal carcinoma xenografts. Volume, weight, radiosensitization, and the rate of inhibition of tumor growth in the xenografts were evaluated in different groups. Apoptosis was evaluated by TUNEL assay. In addition, mRNA and protein levels of GLUT-1, p-Akt, and PI3K in the xenografts were measured. Treatment with LY294002, wortmannin, wortmannin plus GLUT-1 AS-ODN, and LY294002 plus GLUT-1 AS-ODN after X-ray irradiation significantly reduced the size and weight of the tumors, rate of tumor growth, and apoptosis in tumors compared to that observed in the 10-Gy group (p<0.05). In addition, mRNA and protein expression of GLUT-1, p-Akt, and PI3K was downregulated. The E/O values of LY294002, LY294002 plus GLUT-1 AS-ODN, wortmannin, and wortmannin plus GLUT-1 AS-ODN were 2.7, 1.1, 1.8, and 1.8, respectively. Taken together, these data indicate that GLUT-1 AS-ODN as well as the inhibitors of PI3K/Akt signaling may act as radiosensitizers of laryngeal carcinoma in vivo.  相似文献   

6.
Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics.  相似文献   

7.
8.
We previously reported that prolactin (PRL) induces chitotriosidase (CHIT‐1) mRNA expression in human macrophages. In this investigation we determined the signaling pathways involved in CHIT‐1 induction in response to PRL. The CHIT‐1 induction PRL‐mediated was reduced by wortmannin and LY‐294002, inhibitors of phosphatidylinositol 3‐kinase (PI3‐K) and by genistein an inhibitor of protein tyrosine kinase (PTK). Pre‐treatment of macrophages with SB203580, a specific inhibitor of the mitogen‐activated kinases (MAPK) p38, or with U0126, an inhibitor of MAPK p44/42, prevented both basal and exogenous PRL‐mediated CHIT‐1 expression. No significant effects on CHIT‐1 induction PRL‐mediated were observed with a protein kinase C inhibitor (PKC), rottlerin, or with an Src inhibitor, PP2, or with JAK2 inhibitor, AG490. In addition, PRL induced a phosphorylation of AKT that was prevented both by the two MAPK inhibitors SB203580 and U0126 and by the PI3‐K inhibitors wortmannin and LY‐294002. In conclusion, our results indicate that PRL up‐regulated CHIT‐1 expression via PTK, PI3‐K, MAPK, and signaling transduction components. J. Cell. Biochem. 107: 881–889, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
We previously reported that p38 mitogen-activated protein (MAP) kinase plays a part in sphingosine 1-phosphate-stimulated heat shock protein 27 (HSP27) induction in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the induction of HSP27 in these cells. Sphingosine 1-phosphate time dependently induced the phosphorylation of Akt. Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, reduced the HSP27 induction stimulated by sphingosine 1-phosphate. The sphingosine 1-phosphate-induced phosphorylation of GSK-3beta was suppressed by Akt inhibitor. The sphingosine 1-phosphate-induced HSP27 levels were attenuated by LY294002 or wortmannin, PI3K inhibitors. Furthermore, LY294002 or Akt inhibitor did not affect the sphingosine 1-phosphate-induced phosphorylation of p38 MAP kinase and SB203580, a p38 MAP kinase inhibitor, had little effect on the phosphorylation of Akt. These results suggest that PI3K/Akt plays a part in the sphingosine 1-phosphate-stimulated induction of HSP27, maybe independently of p38 MAP kinase, in osteoblasts.  相似文献   

10.

Background

Legionella pneumophila, is an intracellular pathogen that causes Legionnaires'' disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis.

Methodology/Principal Findings

Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3), a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K) inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt) activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85α subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells.

Conclusion/Significance

Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies for undermining L. pneumophila host uptake and reducing pathogenesis of Legionnaires'' disease.  相似文献   

11.
The protein kinase Akt participates in such important functions of endothelial cells as nitric oxide production and angiogenesis, activities that involve changes in cytosolic Ca2+ concentration. However, it is not known if activation of Akt is itself involved in the regulation of Ca2+ signals produced in these cells. The objective of this study was to examine if Akt is involved in the regulation of Ca2+ signaling in endothelial cells. Agonist-stimulated Ca2+ signals, assessed using fura-2, were compared in porcine aortic endothelial cells under control conditions or conditions in which Akt was blocked either by different inhibitors of phosphatidylinositol 3-kinase (PI3 kinase)/Akt or by transient expression of a dominant-negative form of Akt (dnAkt). We found that the release of intracellular Ca2+ stores stimulated by bradykinin or thapsigargin is not affected by the PI3 kinase inhibitors LY294002 and wortmannin, or by expression of dnAkt. LY294002 dose-dependently inhibits store-operated Ca2+ entry, an effect not seen with wortmannin. Expression of dnAkt has no effect on store-operated Ca2+ entry. We conclude that Akt is not involved in the regulation of agonist-stimulated Ca2+ signals in endothelial cells. The compound LY294002 inhibits store-operated Ca2+ entry in these cells by a mechanism independent of PI3 kinase/Akt inhibition.  相似文献   

12.
Hemangiopoietin (HAPO) is a growth factor that significantly stimulates proliferation and survival of the primitive cells of hematopoietic and endothelial lineages. To determine the mechanism of action of HAPO, the anti-apoptotic activity and signal transduction pathway of HAPO were investigated using a factor-dependent leukemia cell line, the MO7e cells. Recombinant human HAPO (rhHAPO) was produced in Escherichia coli and purified by a series of column chromatography with a purity of more than 95%. rhHAPO significantly supported the survival of MO7e cells after deprivation of granulocyte-macrophage colony stimulating factor and activated phosphatidylinositol 3-kinase (PI3K). When the MO7e cells were treated with two specific inhibitors to PI3K (LY294002 or wortmannin), a significant loss of cell viability with evidence of apoptosis was observed. Moreover, the protein kinase B (Akt), one of the downstream effectors of PI3K-dependent survival signaling, was activated in HAPO-stimulated MO7e cells. Phosphorylation of Akt at serine 473 and its downstream molecular Bad at serine 136 was induced by HAPO, but was blocked by two PI3K inhibitors, LY294002 and wortmannin. In addition, HAPO inhibited caspase-3 activities and poly(ADP-ribose) polymerase degradation. Such an effect of HAPO was also significantly blocked by either LY294002 or wortmannin. These results indicate that HAPO protects MO7e cells from apoptotic death through a PI3K-Akt pathway.  相似文献   

13.
The role of integrin-linked kinase (ILK) in transforming growth factor beta (TGFbeta)-mediated epithelial to mesenchymal transition was investigated. A stable transfection of dominant-negative ILK results in the prevention of TGFbeta-mediated E-cadherin delocalization. TGFbeta-mediated phosphorylation of Akt at Ser-473 was inhibited by dominant-negative ILK and PI3K inhibitors, LY294002 and wortmannin. Treatment with TGFbeta stimulated induction of Akt and ILK kinase activity in HaCat control cells. This increased ILK activity by TGFbeta was lowered by PI3K inhibitor, LY294002. In addition, PI3K inhibitor, dominant-negative Akt, and dominant-negative ILK could not block TGFbeta-mediated C-terminal phosphorylation of Smad2. Taken together, these data suggest that PI3K-ILK-Akt pathway that is independent of the TGFbeta-induced Smad pathway is required for TGFbeta-mediated epithelial to mesenchymal transition.  相似文献   

14.
15.
16.
The sensitivity of adipocytes to lipolytic agents is increased after starvation. In this study, we found that LY294002, an inhibitor of phosphatidylinositol-3 kinase (PI3K), in the concentration of more than 50 microM potentiates lipolysis induced by adenosine deaminase in adipocytes from fed rats (f-adipocytes), but not from starved rats (s-adipocytes). It also enhanced the sensitivity to lipolytic action of isoproterenol in f-adipocytes much more than s-adipocytes. The target of LY294002 may be an anti-lipolytic regulator expressed in response to food intake. Since another PI3K inhibitor, wortmannin, or a phosphodiesterase 3 (PDE3) inhibitor, cilostamide, failed to cause any specific effect to f-adipocytes, the PI3K-PDE3B pathway cannot be a target of LY294002. We found that LY294002 inhibits efficiently the cytoplasmic PDE activity of adipocytes. Rolipram, a specific inhibitor of PDE4, also inhibited the cytoplasmic PDE and caused a preferential increase of lipolysis in f-adipocytes. LY294002 blunted the actions of rolipram on lipolysis and the PDE activity. LY294002 accelerated protein kinase A activation. These data suggest that the rolipram-sensitive PDE4 is an anti-lipolytic enzyme expressed according to food intake. LY294002 may potentiate lipolysis through inhibition of the PDE4.  相似文献   

17.
The antioxidant-responsive element (ARE) plays an important role in the induction of phase II detoxifying enzymes including NADPH:quinone oxidoreductase (NQO1). We report herein that activation of the human NQO1-ARE (hNQO1-ARE) by tert-butylhydroquinone (tBHQ) is mediated by phosphatidylinositol 3-kinase (PI3-kinase), not extracellular signal-regulated kinase (Erk1/2), in IMR-32 human neuroblastoma cells. Treatment with tBHQ significantly increased NQO1 protein without activation of Erk1/2. In addition, PD 98059 (a selective mitogen-activated kinase/Erk kinase inhibitor) did not inhibit hNQO1-ARE-luciferase expression or NQO1 protein induction by tBHQ. Pretreatment with LY 294002 (a selective PI3-kinase inhibitor), however, inhibited both hNQO1-ARE-luciferase expression and endogenous NQO1 protein induction. In support of a role for PI3-kinase in ARE activation we show that: 1) transfection of IMR-32 cells with constitutively active PI3-kinase selectively activated the ARE in a dose-dependent manner that was completely inhibited by treatment with LY 294002; 2) pretreatment of cells with the PI3-kinase inhibitors, LY 294002 and wortmannin, significantly decreased NF-E2-related factor 2 (Nrf2) nuclear translocation induced by tBHQ; and 3) ARE activation by constitutively active PI3-kinase was blocked completely by dominant negative Nrf2. Taken together, these data clearly show that ARE activation by tBHQ depends on PI3-kinase, which lies upstream of Nrf2.  相似文献   

18.
The family of phosphoinositide 3-kinases (PI3K) regulates fundamental cellular responses such as proliferation, apoptosis, motility, and adhesion. In particular, the PI3K gamma isoform plays a critical role in the control of cell migration. Despite the attractiveness of PI3-kinases as drug targets, drug discovery efforts have been hampered by the lack of appropriate lipid kinase assay formats suitable for high-throughput screening. The authors report the development of a simple and robust 384-well plate assay that is based on(33) P-phosphate transfer from radiolabeled [gamma(33) P]ATP to phosphatidylinositol immobilized on Maxisorp plates. The established assay format for PI3K gamma was easily adapted to the automated screening platform and was successfully employed for high-throughput screening. Enzymatic and inhibition characteristics of recombinant human PI3K gamma determined with the plate assay are in very good agreement with previously reported values determined in other assay formats. Maximal catalytic activity of PI3K gamma was observed at pH 7.0. The apparent K(m) value for ATP using a 1:1 mixture of phosphatidylinositol and phosphatidylserine was determined to be 7.3 microM (6.0-8.6 microM, 95% confidence interval [CI]). IC(50) values for known PI3-kinase inhibitors were determined to be 1.45 nM (1.17-1.80 nM, 95% CI) for wortmannin and estimated from partial inhibition data to be 1400, 2830, and 21,400 nM for quercetin, LY294002, and staurosporine, respectively. This novel assay approach allows for screening of inhibitors of lipid kinases in high-throughput mode and thereby may facilitate the identification of novel inhibitory structures for drug development.  相似文献   

19.
The Ras/Raf/extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway is known to cross-talk with other signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, the role of PI3K in ERK-1/2 activation induced by tyrosine kinase receptors was not fully understood. Here, we report that two structurally distinct PI3K inhibitors, wortmannin and LY294002, inhibited insulin-induced activation of ERK1/2 but had no effect on EGF-induced activation of ERK1/2 in hepatocellular carcinoma BEL-7402 and SMMC-7721 cells, breast cancer MCF-7 cells, and prostate cancer LNCaP cells. Although protein kinase C could act as a mediator between PI3K and ERK1/2, protein kinase C inhibitor chelerythrine chloride did not inhibit insulin-induced ERK1/2 activation. Both insulin- and EGF-induced ERK1/2 activation are strictly dependent on Ras activation, however, wortmannin only inhibited insulin-induced, but not EGF-induced Ras activation. These results indicate that PI3K plays different roles in the activation of Ras/ERK1/2 signaling by insulin and EGF, and that insulin-stimulated, but not EGF-stimulated, ERK1/2 and Akt signalings diverge at PI3K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号