首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Membrane cofactor protein (MCP) of the C system is a widely distributed regulatory molecule with C3b/C4b binding and factor I-dependent cofactor activity. A rabbit polyclonal antibody was raised against purified human MCP, and it was found to also immunoprecipitate C4b-binding protein (C4bp). Other related complement regulatory proteins, factor H, C3b/C4b receptor, and decay-accelerating factor, were not recognized by this polyclonal antibody to MCP. The cross-reactive epitope was sensitive to reduction with 2-ME and about 3% of the anti-MCP antibody reacted with C4bp. The amino-terminal 48,000-Da, chymotryptic fragment of C4bp was recognized by the antibody to MCP. This fragment of C4bp contains a seven-amino acid peptide that is identical, in its sequence and its location in the third short consensus repeat, to one found in MCP. Two polyclonal antibodies to C4bp, one raised to native and the other to reduced C4bp, did not cross-react with MCP. In addition to this one-way cross-reaction with C4bp, a protein with a m.w. of approximately 60,000 (p60) was found in two of three C4bp preparations that also cross-reacted with antiserum to MCP. p60 was present in trace quantities in the C4bp preparation and was successfully isolated from plasma by C3b affinity chromatography. Its Mr was distinct from that of MCP and other known C3b/C4b binding proteins. Furthermore, p60 was isolated by two different procedures and such material possessed no detectable cofactor activity. Based on these results, p60 is a plasma C3b-binding protein that shares epitopes with C4bp and MCP, and is probably not a soluble form of MCP.  相似文献   

2.
Membrane cofactor protein CD46 controls complement activation on cells, is a receptor for several pathogens, and modulates immune responses by affecting CD8(+) T cells. Cells can release CD46 in an intact form on membrane vesicles and in a truncated form by a metalloproteolytic cleavage. The mechanism of shedding and its relationship to cell physiology has remained unclear. We have found using RNA interference analysis that a disintegrin and metalloproteinase (ADAM) 10 is responsible for the regulated shedding of the ectodomain of CD46 in apoptotic cells. The shedding of CD46 was initiated with staurosporine and UVB. Exposure of cell cultures to either UVB or staurosporine resulted in changes of cell morphology and detachment of cells from their matrices within 8-24 h. During this process CD46 was released both in apoptotic vesicles (vCD46) and proteolytically (sCD46) into the medium. Both the metalloproteinase inhibitor GM6001 and RNA interference of ADAM10 completely prevented the release of sCD46 and increased the expression of vCD46 on HaCaT cell vesicles, suggesting that ADAM10 releases sCD46 from the apoptotic vesicles. To explore whether the release of sCD46 is associated with apoptosis we analyzed the effects of caspase inhibitors. As expected, the inhibition of caspase activity attenuated the characteristic features of apoptosis and also decreased the release of sCD46. Our results reveal ADAM10 as an important regulator of CD46 expression during apoptosis. The ADAM10-mediated release of CD46 from apoptotic vesicles may represent a form of strategy to allow restricted complement activation to deal with modified self.  相似文献   

3.
Membrane cofactor protein (MCP) (CD46) of the C system binds to C3b and C4b, functions as a cofactor for their cleavage, and protects autologous cells from C-mediated injury. The predominant structural motif of MCP is the short consensus repeat (SCR), a repeating domain involved in ligand binding of other related C regulatory proteins. SCR deletion mutants were constructed to determine which of the four SCR of MCP contribute to ligand binding and cofactor activity. ELISA were developed to evaluate binding efficiency of mutants to ligand. Analysis of the deletion mutants indicated that the third and fourth SCR were important for both ligand binding and cofactor activity of C3b (iC3) and C4b. In addition, the same SCR were required for efficient binding of an mAb known to inhibit MCP function. The mutant deleted of SCR-2 bound but lacked cofactor activity for iC3. It did not bind or possess cofactor activity for C4b. Deletion of the first (amino-terminal) SCR had a minimal effect on iC3 binding and cofactor activity but reduced the efficiency of C4b binding. The results identify the SCR of MCP that contribute to ligand binding and cofactor activity. The data also suggest the presence of distinguishable iC3 and C4b binding sites and provide evidence that iC3 binding is not always sufficient for cofactor activity.  相似文献   

4.
Decay-accelerating factor (DAF or CD55) and membrane cofactor protein (MCP or CD46) function intrinsically in the membranes of self cells to prevent activation of autologous complement on their surfaces. How these two regulatory proteins cooperate on self-cell surfaces to inhibit autologous complement attack is unknown. In this study, a GPI-anchored form of MCP was generated. The ability of this recombinant protein and that of naturally GPI-anchored DAF to incorporate into cell membranes then was exploited to examine the combined functions of DAF and MCP in regulating complement intermediates assembled from purified alternative pathway components on rabbit erythrocytes. Quantitative studies with complement-coated rabbit erythrocyte intermediates constituted with each protein individually or the two proteins together demonstrated that DAF and MCP synergize the actions of each other in preventing C3b deposition on the cell surface. Further analyses showed that MCP's ability to catalyze the factor I-mediated cleavage of cell-bound C3b is inhibited in the presence of factors B and D and is restored when DAF is incorporated into the cells. Thus, the activities of DAF and MCP, when present together, are greater than the sum of the two proteins individually, and DAF is required for MCP to catalyze the cleavage of cell-bound C3b in the presence of excess factors B and D. These data are relevant to xenotransplantation, pharmacological inhibition of complement in inflammatory diseases, and evasion of tumor cells from humoral immune responses.  相似文献   

5.
Membrane cofactor protein (MCP or gp45-70) is a recently described regulatory glycoprotein of the complement system which binds iC3 or C3b and is present on human platelets, T cells, B cells, monocytes, and mononuclear-derived cell lines. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, MCP migrates as a doublet with an Mr of the upper band of 63,000 and the lower band of 58,000. The same pattern was found on all cell populations in a given individual and was stable over time. In order to further characterize the two band pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, MCP was isolated by affinity chromatography or immunoprecipitation from 72 healthy unrelated donors. All individuals expressed both bands and, based on the densitometric scanning of gels, three patterns were noted: upper band predominant in 65%, approximately equal distribution of upper and lower bands in 29%, and lower band predominant in 6%. These observed phenotypic frequencies fit with expectations based on Hardy-Weinberg equilibrium for a two-allele system. Family studies also support this model as none of the 26 offspring had a phenotype that deviated from the expected, assuming an autosomal codominant model of inheritance. These results are consistent with a simple two-allele system that controls the expression of the two bands of MCP.  相似文献   

6.
Thrombin-catalyzed activation of Protein C is accelerated by a human endothelial cell surface cofactor. The cofactor occurs also on mouse hemangioma cells (a transformed endothelial cell line), but not on cultured human smooth muscle cells or fibroblasts. The cofactor remains bound to the cell surface during Protein C activation. The cofactor is saturable with respect to both Protein C (Km = 0.72 +/- 0.07 microM) and thrombin (Km = 0.48 +/- 0.05 nM). Diisopropylphosphoryl-thrombin is a competitive inhibitor of the cofactor-dependent reaction with Ki = 0.56 +/- 0.1 nM. Prothrombin Fragment 1, the peptide derived from prothrombin that retains phospholipid binding capacity, does not inhibit activation of Protein C when present in a 7:1 molar excess over Protein C. Platelet Factor 4 (20 microgram/ml) also fails to inhibit Protein C activation. It is concluded that the endothelial cell provides a surface on which Protein C can be activated under physiological conditions.  相似文献   

7.
Membrane cofactor protein (MCP) regulates C activation by serving as a cofactor for the cleavage of C3b and C4b by the serine protease factor I. An MCP-like molecule on the inner acrosomal membrane of human spermatozoa has been characterized. Three mAb and a rabbit polyclonal antibody against MCP recognized the sperm protein. On SDS-PAGE, it migrated as a single band with a molecular mass of 38,000 and 44,000 Da under nonreducing or reducing conditions, respectively. The molecular mass was 10,000 to 20,000 Da less than the two forms of MCP expressed on others cells. The electrophoretic pattern, by one- and two-dimensional gel analysis, and the isoelectric point profile (4.5 to 5.0) of the sperm protein were similar among multiple individuals. In contrast to MCP of other cells, digestion with endoglycosidases did not alter either the m.w. or the pI of the protein, suggesting that it is a poorly or nonglycosylated form of MCP. The solubilized sperm protein bound C3 with broken thioester bond to Sepharose and possessed cofactor activity for factor I-mediated cleavage of C3 with the broken bond. A mAb that blocks the regulatory function of MCP inhibited the cofactor activity of the sperm lysate. Thus, the sperm protein is an antigenic and functional homologue of MCP but has the distinct structural features of a lower m.w. and an apparent lack of glycosylation. MCP may play an essential role in the survival of the acrosome-reacted spermatozoa by modulating C activation in the female genital tract.  相似文献   

8.
Membrane cofactor protein (MCP; CD46), a widely distributed regulator of complement activation, is a cofactor for the factor I-mediated degradation of C3b and C4b deposited on host cells. MCP possesses four extracellular, contiguous complement control protein modules (CCPs) important for this inhibitory activity. The goal of the present study was to delineate functional sites within these modules. We employed multiple approaches including mutagenesis, epitope mapping, and comparisons to primate MCP to make the following observations. First, functional sites were located to each of the four CCPs. Second, some residues were important for both C3b and C4b interactions while others were specific for one or the other. Third, while a reduction in ligand binding was invariably accompanied by a parallel reduction in cofactor activity (CA), other mutants lost or had reduced CA but retained ligand binding. Fourth, two C4b-regulatory domains overlapped measles virus interactive regions, indicating that the hemagglutinin docks to a site important for complement inhibition. Fifth, several MCP regulatory areas corresponded to functionally critical, homologous positions in other CCP-bearing C3b/C4b-binding proteins. Based on these data and the recently derived crystal structure of repeats one and two, computer modeling was employed to predict MCP structure and examine active sites.  相似文献   

9.
Ho DK  Tissari J  Järvinen HM  Blom AM  Meri S  Jarva H 《PloS one》2011,6(11):e27546
Resistance to complement mediated killing, or serum resistance, is a common trait of pathogenic bacteria. Rck is a 17 kDa outer membrane protein encoded on the virulence plasmid of Salmonella enterica serovars Typhimurium and Enteritidis. When expressed in either E. coli or S. enterica Typhimurium, Rck confers LPS-independent serum resistance as well as the ability to bind to and invade mammalian cells. Having recently shown that Rck binds the inhibitor of the alternative pathway of complement, factor H (fH), we hypothesized that Rck can also bind the inhibitor of the classical and lectin pathways, C4b-binding protein (C4BP). Using flow cytometry and direct binding assays, we demonstrate that E. coli expressing Rck binds C4BP from heat-inactivated serum and by using the purified protein. No binding was detected in the absence of Rck expression. C4BP bound to Rck is functional, as we observed factor I-mediated cleavage of C4b in cofactor assays. In competition assays, binding of radiolabeled C4BP to Rck was reduced by increasing concentrations of unlabeled protein. No effect was observed by increasing heparin or salt concentrations, suggesting mainly non-ionic interactions. Reduced binding of C4BP mutants lacking complement control protein domains (CCPs) 7 or 8 was observed compared to wt C4BP, suggesting that these CCPs are involved in Rck binding. While these findings are restricted to Rck expression in E. coli, these data suggest that C4BP binding may be an additional mechanism of Rck-mediated complement resistance.  相似文献   

10.
The involvement of complement activation in various forms of cardiovascular disease renders it an important factor for disease progression and therapeutic intervention. The protective effect of resveratrol against cardiovascular disease via moderate red wine consumption has been established but the exact mechanisms are still under investigation. The current study utilised human coronary artery endothelial cells (HCAECs) in order to assess the extent to which the protective effect of resveratrol, at concentrations present in red wine, can be attributed to the upregulation of complement regulatory proteins through heme-oxygenase (HO)-1 induction. Resveratrol at concentrations as low as 0.001 μΜ increased HO-1 expression as well as membrane cofactor protein (MCP, CD46) and decay-accelerating factor (DAF, CD55) expression with no-effect on CD59. Silencing of HO-1 expression by HO-1 siRNAs abrogated both DAF and MCP protein expression with no effect on CD59. Resveratrol-mediated induction of DAF and MCP reduced C3b deposition following incubation of HCAECs with 10% normal human serum or normal rat serum as a source of complement. Incubation of HCAECs, with either a DAF blocking antibody or following transfection with HO-1 siRNAs, in the presence of 10% normal rat serum increased C3b deposition, indicating that both DAF and HO-1 are required for C3b reduction. These observations support a novel mechanism for the protective effect of resveratrol against cardiovascular disease and confirm the important role of HO-1 in the regulation of the complement cascade.  相似文献   

11.
Herpesvirus saimiri (HVS) is a lymphotropic virus that causes T-cell lymphomas in New World primates. It encodes a structural homolog of complement control proteins named complement control protein homolog (CCPH). Previously, CCPH has been shown to inhibit C3d deposition on target cells exposed to complement. Here we have studied the mechanism by which it inactivates complement. We have expressed the soluble form of CCPH in Escherichia coli, purified to homogeneity and compared its activity to vaccinia virus complement control protein (VCP) and human complement regulators factor H and soluble complement receptor 1. The expressed soluble form of CCPH bound to C3b (KD = 19.2 microm) as well as to C4b (KD = 0.8 microm) and accelerated the decay of the classical/lectin as well as alternative pathway C3-convertases. In addition, it also served as factor I cofactor and supported factor I-mediated inactivation of both C3b and C4b. Time course analysis indicated that although its rate of inactivation of C4b is comparable with VCP, it is 14-fold more potent than VCP in inactivating C3b. Site-directed mutagenesis revealed that Arg-118, which corresponds to Lys-120 of variola virus complement regulator SPICE (a residue critical for its enhanced C3b cofactor activity), contributes significantly in enhancing this activity. Thus, our data indicate that HVS encodes a potent complement inhibitor that allows HVS to evade the host complement attack.  相似文献   

12.
Functional properties of membrane-associated complement receptor CR1   总被引:2,自引:0,他引:2  
It was previously shown that membrane receptors for C3b (CR1) purified from human erythrocytes were powerful inhibitors of the complement cascade and that they encompass the regulatory functions of the serum proteins beta 1H (H) and C4-binding protein (C4bp). In the present report we study the functional properties of membrane-associated CR1. When tonsil lymphocytes, which contain between 30 and 60% of CR1-bearing B cells, are incubated with the red cell complement intermediate EAC14oxy2lim or EAC14oxy23lim, they inhibit both C42 and C423 in a dose-dependent manner. These effects are mediated by membrane-associated molecules. Indeed, mild trypsinization of the lymphocytes abolishes their activity, and formaldehyde-fixed cells are as effective as viable cells. The inhibitory effects are in part mediated by CR1. The lymphocyte activities are reversed about 60% if monoclonal antibodies to CR1 or fluid phase C3b are present in the incubation medium. Moreover, upon addition of C3b-inactivator (l), lymphocytes release C3c fragments from EAC14oxy23b. The release of C3c was also abolished by antibodies to CR1. These results support the idea that CR1, as well as other molecules from the lymphocyte membrane, can function as inhibitor(s) of complement activation in their vicinity.  相似文献   

13.
Vaccinia virus encodes a structural and functional homolog of human complement regulators named vaccinia virus complement control protein (VCP). This four-complement control protein domain containing secretory protein is known to inhibit complement activation by supporting the factor I-mediated inactivation of complement proteins, proteolytically cleaved form of C3 (C3b) and proteolytically cleaved form of C4 (C4b) (termed cofactor activity), and by accelerating the irreversible decay of the classical and to a limited extent of the alternative pathway C3 convertases (termed decay-accelerating activity [DAA]). In this study, we have mapped the VCP domains important for its cofactor activity and DAA by swapping its individual domains with those of human decay-accelerating factor (CD55) and membrane cofactor protein (MCP; CD46). Our data indicate the following: 1) swapping of VCP domain 2 or 3, but not 1, with homologous domains of decay-accelerating factor results in loss in its C3b and C4b cofactor activities; 2) swapping of VCP domain 1, but not 2, 3, or 4 with corresponding domains of MCP results in abrogation in its classical pathway DAA; and 3) swapping of VCP domain 1, 2, or 3, but not 4, with homologous MCP domains have marked effect on its alternative pathway DAA. These functional data together with binding studies with C3b and C4b suggest that in VCP, domains 2 and 3 provide binding surface for factor I interaction, whereas domain 1 mediates dissociation of C2a and Bb from the classical and alternative pathway C3 convertases, respectively.  相似文献   

14.
Removal of exposed, terminal sialic acid (SA) from carbohydrate chains N-glycosidically linked to asparagine residues of highly pure human C5 with bacterial sialidase increased C-mediated hemolysis of antibody-sensitized sheep E maximally 2.77-fold. Sialidase-treated C5 used as a reagent for the titration of C6, C7, C8, and C9 resulted in increased titers of all these components compared to buffer-treated C5. As determined by a fluorometric method, ca. 65% of the SA was enzymically hydrolyzed under optimal conditions. Endoglycosidase F incubated with C5 followed by monosaccharide analyses by anion exchange chromatography with pulsed amperometric detection revealed both high mannose and complex (terminate in SA) oligosaccharides were hydrolyzed; no effect was found on the functional activity of C5. Approximately 4% of the complex oligosaccharides were hydrolyzed from C5. Comparison of sialidase- and buffer-treated C5 decay rates from EAC1gp(4b,oxy2a,3b)hu resulted in two linear components of the decay curve with sialidase-treated C5, but one linear component with buffer-treated C5. Of the sialidase-treated 125I-C5 15% was bound to EAC1gp(4b,oxy2a,3b)hu compared to 9.3% of buffer-treated 125I-C5. Furthermore, 27% of sialidase-treated 125I-C5 was bound to EAC1gp,4bhu compared to 16.6% of buffer-treated 125I-C5, but no lysis occurred after the addition of C6-C9. The mechanism of increased hemolytic activity after removal of SA from C5 is: the Tmax is prolonged at 30 degrees C (ca. 15 min vs 9 min), and a higher percentage of C5 binds to cellular intermediates compared to buffer-treated C5.  相似文献   

15.
16.
Ail is a 17-kDa chromosomally encoded outer membrane protein that mediates serum resistance (complement resistance) in the pathogenic Yersiniae (Yersinia pestis, Y. enterocolitica, and Y. pseudotuberculosis). In this article, we demonstrate that Y. pseudotuberculosis Ail from strains PB1, 2812/79, and YPIII/pIB1 (serotypes O:1a, O:1b, and O:3, respectively) can bind the inhibitor of the classical and lectin pathways of complement, C4b-binding protein (C4BP). Binding was observed irrespective of serotype tested and independently of YadA, which is the primary C4BP receptor of Y. enterocolitica. Disruption of the ail gene in Y. pseudotuberculosis resulted in loss of C4BP binding. Cofactor assays revealed that bound C4BP is functional, because bound C4BP in the presence of factor I cleaved C4b. In the absence of YadA, Ail conferred serum resistance to strains PB1 and YPIII, whereas serum resistance was observed in strain 2812/79 in the absence of both YadA and Ail, suggesting additional serum resistance factors. Ail from strain YPIII/pIB1 alone can mediate serum resistance and C4BP binding, because its expression in a serum-sensitive laboratory strain of Escherichia coli conferred both of these phenotypes. Using a panel of C4BP mutants, each deficient in a single complement control protein domain, we observed that complement control protein domains 6-8 are important for binding to Ail. Binding of C4BP was unaffected by increasing heparin or salt concentrations, suggesting primarily nonionic interactions. These results indicate that Y. pseudotuberculosis Ail recruits C4BP in a functional manner, facilitating resistance to attack from complement.  相似文献   

17.
18.
For the purpose of constructing a two-phase system reactor the enzymatic process of l-menthol production with cofactor recycling was studied as a model. The half-life of the menthone reductase immobilized onto activated carbon was 4 times as high as that of the free enzyme. The enzyme was capable of regenerating NADH when methyl isobutyl carbinol was used as a second substrate. Continuous production of l-menthol was achieved by using a reactor equipped with a hydrophobic microfiltration membrane. It was found that both NAD(H) and the enzyme could be retained in the reactor and the products, l-methanol and methyl isobutyl ketone, passed through the membrane. The production of l-methanol was maintained for 270 h at a rate of 46.1 g l-1 d-1, and had decreased by one-half at 607 h. The recycling number of NAD(H) was 2500 (max. 3020) during the operation. The number of theoretical plates was calculated to be 40 for the separation of l-menthol from other reactants.  相似文献   

19.
We found previoulsy that interaction of C-reactive protein (CRP) with liposomal model membranes resulted in complement(C)-dependent membrane damage. In the present study, we investigated the influence of membrane composition on the interactions of CRP and C with liposomes. Adsorption experiments showed that binding of CRP was greatest to strongly positive liposomes. A lesser, but still substantial, extent of CRP binding also was observed with negative liposomes, but negligible amounts of CRP bound to neutral or weakly positive liposomes. CRP-mediated consumption of hemolytic C, and C-dependent glucose release from liposomes both were strongly influenced by liposomal charge, positive being superior to negative. Glucose release and, to a lesser extent, consumption of hemolytic C were inversely related to phospholipid fatty acyl chain length. Phospholipid fatty acyl unsaturation and liposomal cholesterol concentration both had strong influences on C consumption and glucose release. The data suggest that CRP-mediated C consumption and membrane damage require an optimum membrane fluidity. Complement damage in the presence of CRP was enhanced by certain sphingolipids and also by digalactosyl diglyceride, but not by sphingomyelin. Our results thus demonstrate that CRP-mediated C consumption and C-dependent membrane damage both are influenced by the liposomal membrane composition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号