首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 834 毫秒
1.
With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5‐hr daylight to “northern” summer conditions of 22‐hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.  相似文献   

2.
The giant willow aphid Tuberolachnus salignus Gmelin is a large phloem-feeding insect which colonizes the stems of willow trees. This aphid is a new invasive species in New Zealand and there is limited knowledge of its inter-annual population patterns and the damage it can cause to willow hosts. Our study investigated the T. salignus population dynamics and its effects on the flowering parameters of fifteen willow species and hybrids in a field trial. The aphid population levels were found to vary among the willow species and hybrids. Based on the aphid population levels, the willow species and hybrids were classified as resistant, moderately resistant, susceptible or highly susceptible. T. salignus infestation had no effect on the flowering of resistant and moderately resistant willows, but significantly delayed the flowering time, extended the flowering duration, and decreased the catkin length in susceptible species and hybrids. Interestingly, aphid infestation was found to increase the catkin number and total floral output of some willow species and hybrids. It can be concluded that aphid populations and their effects on flowering are host-specific, with large differences between resistant and susceptible host plants.  相似文献   

3.
1. Although both endogenous and exogenous processes regulate populations, the current understanding of the contributions from density dependence and climate to the population dynamics of eruptive herbivores remains limited. 2. Using a 17‐year time series of three cereal aphid species [Rhopalosiphum padi L., Metopolophium dirhodum (Walker), and Diuraphis noxia (Kurdumov)] compiled from a trapping network spanning the northwestern U.S.A., temporal and spatial patterns associated with population fluctuations, and modelled density dependence in aphid abundances were tested. These models were used to analyse correlations between climate and aphid abundances in the presence and absence of residual variance as a result of density‐dependent effects. 3. The temporal dynamics of aphid population fluctuations indicated periodicity, with no clear evidence for a spatial pattern underlying population fluctuations. 4. Aphid abundances oscillated in a manner consistent with delayed density dependence for all three aphid species, although the strength of these feedbacks differed among species. 5. Diuraphis noxia abundances were negatively correlated with increasing temperatures in the absence of density‐dependent effects, whereas M. dirhodum abundances were positively correlated with increasing cumulative precipitation in the presence of density‐dependent effects; yet, R. padi abundances were unrelated to climate variables irrespective of population feedbacks. 6. Our analysis suggests that endogenous feedbacks differentially regulate aphid populations in the northwestern U.S.A., and these feedbacks may operate at an expansive spatial scale. It is concluded that the contributions of density dependence and climate to aphid population dynamics are species‐specific in spite of similar ecological niches, with implications for assessing species responses to climate variability.  相似文献   

4.
Aphid population dynamics during the season show a characteristic pattern with rapid increase in numbers at the beginning followed by a sudden drop in the middle of the season. This pattern is usually associated with predation and/or change in food quality during the summer. By developing a mechanistic model of aphid population dynamics we show that this pattern can arise from density-dependent dispersal behaviour of aphids. The dynamics produced by the model were similar to those observed in real populations of the alder aphid (Pterocallis alni). The two mechanisms required for these oscillations to arise were the perception of density through the number of contacts with other individuals and the inter-generational transfer of information (the maternal effect). Both mechanisms are examples of delayed density-dependence and, therefore, this study adds to the evidence that delayed density-dependence might cause complex population dynamics. To reproduce the seasonal dynamics of the alder aphid with the model, the maternal effect was essential, indicating that this could be an important factor in alder aphid dynamics. According to our model, external regulations (e.g., predation and/or change in food quality) were not required to explain the highly oscillatory population dynamics of aphids during a season.  相似文献   

5.
The hypothesis that similar processes govern interannual dynamics of green spruce aphid in the UK and France, is generally supported by the application of a general discrete model. A simple model based on relatively few parameters was able to closely characterise interannual population dynamics from completely independent aerial and arboreal samples of aphids. Long-term field population estimates of the green spruce aphid Elatobium abietinum (Walker) in France have provided the opportunity to select and evaluate the generality of a model, which was developed in the UK to explain the year-to-year variations in peak abundance of the aphid. The objective was to observe the influence of the local climates and disturbing climate factors on the population densities of the insect in two regions of France. The model uses climate variables and aphid population data from regular samples in the two regions that were investigated. A general discrete model was used to predict aphid population densities. The model performed well in tracking the interannual patterns of population but was less likely to predict absolute population density. To improve predictions, further account would need to be taken of additional site-specific climate variables and the strength of overcompensating density dependence. Nevertheless, it is clear that broadly similar processes are at work in the population dynamics of this insect across its biogeographical range.  相似文献   

6.
Species interactions have a spatiotemporal component driven by environmental cues, which if altered by climate change can drive shifts in community dynamics. There is insufficient understanding of the precise time windows during which inter‐annual variation in weather drives phenological shifts and the consequences for mismatches between interacting species and resultant population dynamics—particularly for insects. We use a 20 year study on a tri‐trophic system: sycamore Acer pseudoplatanus, two associated aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and their hymenopteran parasitoids. Using a sliding window approach, we assess climatic drivers of phenology in all three trophic levels. We quantify the magnitude of resultant trophic mismatches between aphids and their plant hosts and parasitoids, and then model the impacts of these mismatches, direct weather effects and density dependence on local‐scale aphid population dynamics. Warmer temperatures in mid‐March to late‐April were associated with advanced sycamore budburst, parasitoid attack and (marginally) D. platanoidis emergence. The precise time window during which spring weather advances phenology varies considerably across each species. Crucially, warmer temperatures in late winter delayed the emergence of both aphid species. Seasonal variation in warming rates thus generates marked shifts in the relative timing of spring events across trophic levels and mismatches in the phenology of interacting species. Despite this, we found no evidence that aphid population growth rates were adversely impacted by the magnitude of mismatch with their host plants or parasitoids, or direct impacts of temperature and precipitation. Strong density dependence effects occurred in both aphid species and probably buffered populations, through density‐dependent compensation, from adverse impacts of the marked inter‐annual climatic variation that occurred during the study period. These findings explain the resilience of aphid populations to climate change and uncover a key mechanism, warmer winter temperatures delaying insect phenology, by which climate change drives asynchronous shifts between interacting species.  相似文献   

7.
The large pine aphid, Cinara pinea lives exclusively on Pinus species, where it feeds on the foliated shoots of the current and previous year. The paper describes the development of a computer model designed to simulate the aphid's population dynamics on saplings in the controlled environment of the laboratory, i.e. in the absence of natural enemies. The model was able to account for about 80% of the variation in aphid numbers within and between trees over a three month period. Sensitivity analysis revealed that the number of pine aphids is limited primarily by nymphal emigration, the operation of which is sensitive both to density and to plant quality as reflected in aphid growth rates. Of secondary importance are changes in reproduction acting through increased reproductive delay, again a result of altered growth rates and adult size. Development, too, has an important secondary influence. Contrary to expectation and conventional belief, however, alate production proved to be of negligible importance, either in limiting or regulating population numbers. Alatae are produced in too few numbers and for too short a period to significantly alter the pattern of population change.  相似文献   

8.
  • Mutualism studies often focus on the service provided by single species, while variation in benefits provided by multiple partners is less understood. Ant-aphid food-for-protection mutualisms are suitable to study the implications of intra-guild service variation because they often involve several ant species with varying levels of aggressiveness.
  • We studied an aphid species and its associated ant guild to address whether intra-guild defence variation against aphid natural enemies explains aphid performance on plants (thistles). We surveyed plants with natural abundances of aphids associated with different ant species and estimated aphid population growth. We conducted confrontation experiments between ant species and aphid natural enemies (ladybugs and hoverfly larvae). In plants patrolled by the most aggressive ant species, we determined the ant's probability of expelling aphid natural enemies and tested whether ant exclusion affects the abundance of aphids and their natural enemies.
  • The ant Dorymyrmex tener was the most abundant and frequent species on plants and the most aggressive against aphid natural enemies. Aphid populations grew faster on plants patrolled by D. tener compared to plants patrolled by Camponotus distinguendus or D. richteri. Field experiments confirmed that D. tener effectively expels aphid natural enemies from plants. When D. tener was excluded, the density of aphids decreased, while the abundance of aphid natural enemies increased.
  • The disruption of aphid predation by aggressive and numerically dominant ant species is a determinant of aphid population dynamics. This study illustrates the importance of considering intra-guild service variation to better understand multi-partner mutualisms.
  相似文献   

9.
Experimental evidence regarding the responses of cereal aphids to rising atmospheric CO2 has been ambiguous. Some studies suggest increased population sizes under future CO2 levels, others suggest decreased population sizes, and still others suggest little or no difference. Recently, Newman et al. (2003) constructed a general mathematical model of the aphid–grass interaction to investigate whether or not we should, in fact, expect a general aphid response to rising CO2. They concluded that aphid populations are likely to be larger under future CO2 concentrations if soil N levels are high, the aphid species' nitrogen requirement is low and the aphid species' density‐dependent response in winged morph production is weak. In that model, and in field experiments, CO2 concentration influences aphid population dynamics through the effect it has on plant quality. However, future CO2 concentrations are also likely to be accompanied by higher ambient temperatures, a combination that has received little focus to date. In the present paper, the Newman et al. model is used to consider the combined effects of increased CO2 concentrations and temperature on aphid population sizes. It is concluded that, when both factors are elevated, aphid population dynamics will be more similar to current ambient conditions than expected from the results of experiments studying either factor alone. This result has important implications for future experimentation.  相似文献   

10.
The species spectrum of entomophthoralean fungi parasiting aphids was investigated in Slovakia. The surveys focused on aphid fauna occupying both agricultural crops and vegetation at non-crop sites. During the surveys, 15 different entomophthoralean species were identified from 66 aphid species. Of these 15 fungal species, eight had not previously been recorded in Slovakia and one species, Erynia erinacea (Ben-Ze’ev et Kenneth) Remaudière et Hennebert, had not been recorded previously in Central Europe. New hosts for some parasitic fungi were also recorded. The occurrence of fungal infection and the fungal species spectrum varied with sampling period and sampling area. In general, the fungi were observed parasiting aphid populations from April until November. Pandora neoaphidis (Remaudière et Hennebert) Humber was the predominant fungal pathogen and could effectively reduce aphid populations. Entomophthora planchoniana Cornu and Conidiobolus obscurus (Hall et Dunn) Remaudière et Keller were also common pathogens of aphids, but without an epizootic potential. On the other hand, Neozygites fresenii (Nowakowski) Remaudière et Keller had a strong tendency to establish epizootics in dense aphid colonies, especially in those of the black bean aphid. Other entomophthoralean species observed in the country were considered to be minor aphid pathogens on account of their low occurrence, lower specificity to aphids, or high specificity to a single aphid species. This is the first detailed report to date on the occurrence of Entomophthorales in Slovakia.  相似文献   

11.
The role of climatic fluctuations in determining the dynamics of insect populations has been a classical problem in population ecology. Here, we use long-term annual data on green spruce aphid populations at nine localities in the UK for determining the importance of endogenous processes, local weather and large-scale climatic factors. We rely on diagnostic and modelling tools from population dynamic theory to analyse these long-term data and to determine the role of the North Atlantic Oscillation (NAO) and local weather as exogenous factors influencing aphid dynamics. Our modelling suggests that the key elements determining population fluctuations in green spruce aphid populations in the UK are the strong non-linear feedback structure, the high potential for population growth and the effects of winter and spring weather. The results indicate that the main effect of the NAO on green spruce aphid populations is operating through the effect of winter temperatures on the maximum per capita growth rate (Rm). In particular, we can predict quite accurately the occurrence of an outbreak by using a simple logistic model with weather as a perturbation effect. However, model predictions using different climatic variables showed a clear geographical signature. The NAO and winter temperature were best for predicting observed dynamics toward the southern localities, while spring temperature was a much better predictor of aphid dynamics at northern localities. Although aphid species are characterized by complex life-cycles, we emphasize the value of simple and general population dynamic models in predicting their dynamics.  相似文献   

12.
Learning, defined as changes in behavior that occur due to past experience, has been well documented for nearly 20 species of hymenopterous parasitoids. Few studies, however, have explored the influence of learning on population-level patterns of host use by parasitoids in field populations. Our study explores learning in the parasitoid Aphidius ervi Haliday that attacks pea aphids, Acyrthosiphon pisum (Harris). We used a sequence of laboratory experiments to investigate whether there is a learned component in the selection of red or green aphid color morphs. We then used the results of these experiments to parameterize a model that examines whether learned behaviors can explain the changes in the rates of parasitism observed in field populations in South-central Wisconsin, USA. In the first of two experiments, we measured the sequence of host choice by A. ervi on pea aphid color morphs and analyzed this sequence for patterns in biased host selection. Parasitoids exhibited an inherent preference for green aphid morphs, but this preference was malleable; initial encounters with red aphids led to a greater chance of subsequent orientation towards red aphids than predicted by chance. In a second experiment, we found no evidence that parasitoids specialize on red or green morphs; for the same parasitoids tested in trials separated by 2 h, color preference in the first trial did not predict color preference in the second, as would be expected if they differed in fixed preferences or exhibited long-term (> 2 h) learning. Using data from the two experiments, we parameterized a population dynamics model and found that learning of the magnitude observed in our experiments leads to biased parasitism towards the most common color morph. This bias is sufficient to explain changes in the ratio of aphid color morphs observed in field sites over multiple years. Our study suggests that for even relatively simple organisms, learned behaviors may be important for explaining the population dynamics of their hosts.  相似文献   

13.
1. Generalist predators are important contributors to reliable conservation biological control. Indirect interactions between prey species that share a common generalist predator can influence both community dynamics and the efficacy of biological control. 2. Laboratory cage experiments investigated the impact of the combined consumptive and non-consumptive effects of predation by adult Hippodamia convergens as a shared predator on the population growth and relative abundance of Acyrthosiphon pisum and Aphis gossypii as prey species. Predation pressure and prey density were varied. 3. At low predation pressure the indirect interaction between aphid species was asymmetrical with a proportionally greater negative impact of predation on A. gossypii than on A. pisum. At intermediate predation pressure, the indirect interaction became symmetrical. At high predation pressure and higher levels of prey density, it was asymmetrical with greater negative impact on A. pisum, often driven to local extinction while A. gossypii populations persisted. 4. A linear mixed-effects model including early population growth of both aphid species and predation pressure explained 96% and 92% of the variation in the population growth of A. pisum and A. gossypii, respectively, over an 8-day period. The overall effect of shared predation on the indirect interaction between the two aphid species is best described as apparent commensalism, where A. pisum benefited from early population growth of A. gossypii, while A. gossypii was unaffected by early population growth of A. pisum. Considering these indirect interactions is important for conservation biological control efforts to be successful.  相似文献   

14.
In this study we examined the influences that differing life history strategies and population structures at the time of pesticide exposure have on population susceptibility to pesticides. We used life table data and a matrix projection model to incorporate combinations of mortality (lethal effect) and reductions in fecundity (sublethal effect) into estimates of intrinsic population growth rates (r) for a predator, the seven-spot lady beetle, Coccinella septempunctata L., and its prey, the pea aphid, Acyrthosiphon pisum Harris, and an aphid parasitoid, Diaeretiella rapae (M’Intosh). All three species exhibited differences in key life history variables. The aphid had the highest r and shortest generation time, the ladybeetle had the lowest r and longest generation, while the parasitoid exhibited intermediate life history characteristics. When the model was run with populations started as neonates (aphids) or eggs (lady beetle, parasitoid) for each species, ladybeetle populations were much more susceptible than either aphid or parasitoid populations 30 days after simulated exposure to a pesticide. For example, 50% mortality and a 50% reduction in fecundity resulted in a population headed toward extinction (negative r) for the ladybeetle while the parasitoid population grew exponentially (positive r) even after sustaining 70% mortality and a 70% reduction in fecundity. The aphid species maintained exponential growth after sustaining 80% mortality and an 80% reduction in fecundity. Thus, differences in life history variables accounted for the greater susceptibility of the ladybeetle to a pesticide than its aphid prey or the parasitoid over a set time interval. These differences in susceptibility were greatly reduced when the model was run starting with a mixed age/stage population (the stable age distribution) for each species indicating that population structure at the time of pesticide exposure plays a critical role in population susceptibility. These results suggest that life history attributes as well as population structure at the time of pesticide exposure both play a major role in population susceptibility to pesticides, highlighting the need to explicitly consider differences in life history variables among species when calculating compatibility of pesticides and biological control agents as well as the population structure of beneficial species at the time of pesticide application.  相似文献   

15.
1 A simulation model was developed to investigate the inter‐relationship of factors influencing the population dynamics of the bird cherry‐oat aphid (Rhopalosiphum padi (L.)) in barley crops during the autumn and winter. 2 The model incorporated algorithms describing alate immigration, development and survival of adults and nymphs, fecundity and morph determination in newly born nymphs. 3 The model was validated against pest outbreaks in barley fields in south‐east England. 4 It simulated accurately the size of the outbreaks with predictions of peak aphid populations within 20% of the observed in all but one case. Similarly, all but one of the year‐sowing date combination predictions of timing of peak abundance fell within 14 days of the observed. 5 A sensitivity analysis of the model highlighted the relative importance of various population processes in determining simulated aphid population dynamics; decreasing mortality rates of apterous nymphs by as little as 5% over the autumn and winter increased peak densities by as much as 60‐fold, whereas increasing daily temperatures by only 1 °C more than doubled peak aphid abundance. 6 The model identified our understanding of the mechanisms of aphid mortality as a limiting factor in the accurate prediction of R. padi outbreaks in the field.  相似文献   

16.
Genetic variation in plants can influence the community structure of associated species, through both direct and indirect interactions. Herbivorous insects are known to feed on a restricted range of plants, and herbivore preference and performance can vary among host plants within a species due to genetically based traits of the plant (e.g., defensive compounds). In a natural system, we expect to find genetic variation within both plant and herbivore communities and we expect this variation to influence species interactions. Using a three‐species plant‐aphid model system, we investigated the effect of genetic diversity on genetic interactions among the community members. Our system involved a host plant (Hordeum vulgare) that was shared by an aphid (Sitobion avenae) and a hemi‐parasitic plant (Rhinanthus minor). We showed that aphids cluster more tightly in a genetically diverse host‐plant community than in a genetic monoculture, with host‐plant genetic diversity explaining up to 24% of the variation in aphid distribution. This is driven by differing preferences of the aphids to the different plant genotypes and their resulting performance on these plants. Within the two host‐plant diversity levels, aphid spatial distribution was influenced by an interaction among the aphid's own genotype, the genotype of a competing aphid, the origin of the parasitic plant population, and the host‐plant genotype. Thus, the overall outcome involves both direct (i.e., host plant to aphid) and indirect (i.e., parasitic plant to aphid) interactions across all these species. These results show that a complex genetic environment influences the distribution of herbivores among host plants. Thus, in genetically diverse systems, interspecific genetic interactions between the host plant and herbivore can influence the population dynamics of the system and could also structure local communities. We suggest that direct and indirect genotypic interactions among species can influence community structure and processes.  相似文献   

17.
Following the detection of the harlequin ladybird, Harmonia axyridis, in 2003 in potato crops in Belgium, a study was carried out between 2004 and 2006 on the phenology of this species compared to native species in potato. The results confirmed the success of H. axyridis, with high population levels in 2004 and 2005. In 2006, aphid populations were very low and no H. axyridis larvae were sampled in potato, but the indigenous species Coccinella septempunctata and Propylea quatuordecimpunctata were detected. A species by species comparison of the date of first larvae detection, the larvae population peak, and the difference between this peak and the aphid population peak was performed. Results showed a clear correlation between C. septempunctata and P. quatuordecimpunctata and potato aphids, with a delay of 3.5 and 6.5 days between the aphid and ladybird population peaks for the two native species. H. axyridis arrived 7–8 days after the two indigenous species and the larval peak population occurred 15.8 days after the aphid population peak. This meant that H. axyridis had to complete its larval development with very low aphid populations or even with no aphids at all. The reason for its late arrival and the possible food resources used by H. axyridis larvae are discussed.  相似文献   

18.
  • 1 A dataset generated from previous experiments on greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae) response to irrigation and plant density in grain sorghum was reanalyzed using a recently‐developed mechanistic ecological model for describing aphid population density curves. The model was used to estimate seven response variables: observed peak aphid abundance, predicted peak aphid abundance, time of peak abundance, per capita birthrate, death rate coefficient, final cumulative density and duration of substantial aphid infestation across three irrigation regimes and five plant densities.
  • 2 Using regression, the observed peak aphid abundance, predicted peak aphid abundance, per capita birthrate and final cumulative abundance were shown to decrease significantly, whereas the death rate coefficient and duration of the infestation were shown to increase significantly for each 100 000 plant/ha increase.
  • 3 Although significant results were found for a number of variables generated from the specific data set used in the analyses, of perhaps greater importance is the potential use of these equations in future predictions of aphid population dynamics. An example of projecting population curves based on estimated peak and cumulative counts and an example of projecting population curves based on estimated birth and death rate coefficients are provided.
  相似文献   

19.
The spatio-temporal dynamics of two aphid species ( Metopolophium dirhodum and Sitobion avenae ) and a generalist predator ( Pterostichus melanarius ) were observed in a field-scale study using a grid of 256 sampling locations with a 12-m spacing. Using Spatial Analysis by Distance Indices we demonstrate that populations show ephemeral spatial pattern at the field scale. We observed a positive, lagged beetle response to this aphid pattern; conversely, the aphids displayed a negative, lagged response to beetle spatial pattern. Examination of the local structure of the spatio-temporal dynamics revealed a strong response by the beetle population to aphid patches. The temporal structure of spatial associations between the species shows a strong correspondence with those from a conceptual model of predator–prey spatial interaction. The spatially coupled dynamics were sufficiently strong for the predator to have a negative effect on the intrinsic rate of increase of their prey.  相似文献   

20.
Abstract.  1. Previous studies have demonstrated that phenotypic traits of plants have the potential to affect interactions between herbivores and their natural enemies. Consequently, the impact of natural enemies on herbivore vital rates and population dynamics may vary among plant species. This study was designed to investigate the potential for density-dependent parasitism of an aphid herbivore feeding on six different host plant species.
2. Population densities of the aphid Aphis nerii B de F (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) were recorded within a single growing season on six different species of milkweed in the genus Asclepias L. (Asclepiadaceae). Asclepias species are known to vary in their quality as food for herbivores. Although data on plant quality were not available in this study, population data were analysed to determine the effects of different Asclepias species on rates of parasitism and aphid population growth.
3. Parasitism rates of A. nerii varied among Asclepias species but were temporally density dependent over at least some range of aphid density on all plant species. Aphid population growth rates also varied among Asclepias species, and declined with an increase in the maximum parasitism rates among plant species; however, in no case was density-dependent parasitism sufficient to prevent exponential population growth of aphids within the growing season. The results serve to emphasise that, if natural enemies are to regulate herbivore populations, density-dependent mortality is a necessary, but not sufficient, condition for regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号