首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comet assay is a rapid, sensitive and inexpensive method for measuring DNA strand breaks. The comet assay has advantages over other DNA damage methods, such as sister chromatid exchange, alkali elution and micronucleus assay, because of its high sensitivity and that DNA strand breaks are determined in individual cells. This review describes a number of studies that used the comet assay to determine DNA strand breaks in aquatic animals exposed to genotoxicants both in vitro and in vivo, including assessment of DNA damage in aquatic animals collected from contaminated sites. One difficulty of using the comet assay in environmental work is that of comparing results from studies that used different methods, such as empirical scoring or comet tail lengths. There seems to be a consensus in more recent studies to use both the intensity of the tail and the length of the tail, i.e. DNA tail moment, percentage of DNA in the tail. The comet assay has been used to assess DNA repair and apoptosis in aquatic animals and modifications of the comet assay have allowed the detection of specific DNA lesions. There have been some recent studies to link DNA strand breaks in aquatic animals to effects on the immune system, reproduction, growth, and population dynamics. Further work is required before the comet assay can be used as a standard bio-indicator in aquatic environments, including standardization of methods (such as ASTM method E2186-02a) and measurements.  相似文献   

2.
The molecular determination of viral load in the serum represents the most valuable prognostic marker of HBV infection. In this paper, a new molecular assay for the quantitative measurement of HBV presence is described. It is based on PCR performing with a HBV-specific competitor DNA template. For the construction of the DNA template, a HBV DNA-originated 436 bp DNA fragment was modified by introducing a 110 bp deletion and cloned into pUC19. The resulting vector serves as the competitor DNA template in the competitive PCR. Post-PCR, the competitor DNA generates an amplified fragment of 306 bp; it could be easily distinguished from the product generated from the viral-originated DNA product (416 bp) when the same primers are used. The quantitative ratio between the two products enables the quantitative determination of viral load. The range of the HB-PCR assay is from 3 x 10(4)to 6 x 10(10) particles/ml. A serum HBV load determination performed by HB-PCR assay indicated a close correlation with the results of the Quantiplex HBV DNA assay (bDNA). The HB-PCR assay is cheap, reliable and easy to use in any laboratory working with PCR methods.  相似文献   

3.
Gal S  Cook JR  Howells L 《BioTechniques》2006,41(3):303-308
Many DNA binding proteins are known to regulate gene expression. When that binding is altered, a disease state can result. A common method for measuring DNA binding, namely electrophoretic mobility shift assay (EMSA) is often used but it is not amenable to rapid screening of many samples. As an alternative method, we have developed a DNA binding assay for the tumor suppressor protein p53 in a 96-well microtiter plate format using scintillation proximity assay (SPA) beads. We have shown this assay to be sensitive (as little as 0.5 ng p53 can be detected), quick (assay completed in as little as 15 min), and easily quantitated using a microtiter plate scintillation counter We also used the assay to analyze the kinetics of the DNA binding to p53. The specificity of this p53 DNA binding SPA was confirmed using competition by oligonucleotides either from the same gene or from mutated versions of this sequence. Thus, SPA is a good alternative to gel shift assays for DNA binding and may be useful for the analysis of multiple tumor cell samples or for high-throughput screens for compounds affecting DNA binding by proteins of interest.  相似文献   

4.
Marine experimental stem cell transplantations require the accurate discrimination and quantification of donor cells from host cells. A Y-chromosome-specific, quantitative real-time PCR (kinetic PCR) protocol for blood-derived DNA was developed. The assay sensitivity was extremely high with accurate detection of only 10 pg (six copies of Y target DNA) in a variable background of female DNA background ranging from 2.5 to 50 ng. The dynamic range of the assay provided accurate results ranging from 2.2 x 10(-2)% to 100% of male DNA in female background. The kinetic PCR assay can be used in all mouse strains, and a sample size as low as 2.5 ng total DNA is sufficient for analysis. Therefore, kinetic PCR allows engraftment kinetic studies on repeated blood draws of individual animals with no need for sacrifice. Compared to conventional PCR, the assay is much simplified, as neither the accurate adjustment of sample DNA concentration nor a post-reaction analysis procedure is required. The procedure is simple, free of radioactivity, and permits a throughput of 500-600 reactions per day.  相似文献   

5.
《Biologicals》2014,42(2):74-78
All biological products are derived from complex living systems and are often mixed with large numbers of impurities. For reasons of safety, residual host-cell DNA must be eliminated during processing. To assay host-cell DNA content in biopharmaceutical products derived from porcine sources, this study applies the quantitative real-time polymerase chain reaction (Q-PCR) method. The optimized assay in this study is based on the pol region of the porcine endogenous retrovirus (PERV). Assay validation results demonstrate that the proposed assay has appropriate accuracy, preciseness, reproducibility, and sensitivity. Primer and probe specificity are evaluated in real-time Q-PCR reactions using genomic DNA from rabbit, mouse, cat, hamster, monkey, human cell, yeast, and Escherichia coli as templates. The sensitivity of real-time Q-PCR is determined using genomic DNA from the porcine kidney cell line. The reliable detection range is within 0.5–105 pg/reaction. The limit of quantitation is 500 fg. The sensitivity of the assay meets the authority criterion. Moreover, the assay is applied to determine the level of host-cell DNA in recombinant human coagulation factor IX (rhFIX) from transgenic pigs. The real-time Q-PCR assay is thus a promising new tool for quantitative detection and clearance validation of residual porcine DNA when manufacturing recombinant therapeutics.  相似文献   

6.
A nitrocellulose-filter-binding assay system for DNA-protein interactions, suitable for use with crude cell lysates, is described. Such an assay system will detect DNA-binding activities, provided that close attention is paid to the overall concentration of proteins and DNA in the reaction system. The extent of the reduction of generalized DNA-binding by the addition of unlabeled competing DNA is shown to be a function of the source of the competing DNA, since the addition of equal quantities of DNA isolated from different organisms produces drastically different effects. A careful choice of labeled and unlabeled DNA permits preferential binding of sequences from labeled DNA and allows the use of the filter-binding assay as an analytical tool during protein purification.  相似文献   

7.
石斛干品基因组DNA的提取与RAPD分析   总被引:7,自引:0,他引:7  
市场中药干品的药性差异一直是影响中药标准化的瓶颈,而检测技术相对落后是导致这一现象的主要原因。DNA分子水平检测的困难是药材干品的基因组DNA难以提取。本文以铁皮石斛(Dendrobium candidum)干茎为材料,采用了四种方法从干品石斛中提取基因组DNA。结果表明,采用改良的CTAB法可从石斛干品尤其是干茎皮中提取质量较高的基因组DNA,其分子量大于23kb,以此DNA为模板进行不同引物的PCR扩增可获得清晰的RAPD条带。该研究初步建立了石斛干品合适的RAPD技术体系。  相似文献   

8.
Here we report proof-of-principle for a microsphere-based genotyping assay that detects single nucleotide polymorphisms (SNPs) directly from human genomic DNA samples. This assay is based on a structure-specific cleavage reaction that achieves single base discrimination with a 5′-nuclease which recognizes a tripartite substrate formed upon hybridization of target DNA with probe and upstream oligonucleotides. The assay is simple with two easy steps: a cleavage reaction, which generates fluorescent signal on microsphere surfaces, followed by flow cytometry analysis of the microspheres. Genomic DNA samples were genotyped for the SNP in the Apolipoprotein E gene at amino acid position 158. The assay successfully scored wild type, heterozygous and homozygous mutants. To our knowledge, this is the first report of a solid-support assay for detection of SNPs directly from genomic DNA without PCR amplification of the target.  相似文献   

9.
The piggyBac transposon has recently attracted attention as a tool for transgene integration in mammalian cells. However, previous studies involving piggyBac investigated only transposition from circular DNA, although some linear DNA vectors are used to transfect mammalian cells. In this study, we compared the transposition efficiency of piggyBac between linear and circular DNA. Colony counting assay, luciferase assay, and plasmid rescue assay showed that piggyBac transposon can transpose from linear DNA, but its efficiency is lower than the transposition efficiency from circular DNA. These results suggest that circular DNA is more suitable as donor vectors of piggyBac than linear DNA.  相似文献   

10.
A number of drugs target the DNA repair pathways and induce cell kill by creating DNA damage. Thus, processes to directly measure DNA damage have been extensively evaluated. Traditional methods are time consuming, expensive, resource intensive and require replicating cells. In contrast, the comet assay, a single cell gel electrophoresis assay, is a faster, non-invasive, inexpensive, direct and sensitive measure of DNA damage and repair. All forms of DNA damage as well as DNA repair can be visualized at the single cell level using this powerful technique.The principle underlying the comet assay is that intact DNA is highly ordered whereas DNA damage disrupts this organization. The damaged DNA seeps into the agarose matrix and when subjected to an electric field, the negatively charged DNA migrates towards the cathode which is positively charged. The large undamaged DNA strands are not able to migrate far from the nucleus. DNA damage creates smaller DNA fragments which travel farther than the intact DNA. Comet Assay, an image analysis software, measures and compares the overall fluorescent intensity of the DNA in the nucleus with DNA that has migrated out of the nucleus. Fluorescent signal from the migrated DNA is proportional to DNA damage. Longer brighter DNA tail signifies increased DNA damage. Some of the parameters that are measured are tail moment which is a measure of both the amount of DNA and distribution of DNA in the tail, tail length and percentage of DNA in the tail. This assay allows to measure DNA repair as well since resolution of DNA damage signifies repair has taken place. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell 1,2. Cells treated with any DNA damaging agents, such as etoposide, may be used as a positive control. Thus the comet assay is a quick and effective procedure to measure DNA damage.  相似文献   

11.
PM2 is a bacteriophage which has closed circular double-stranded DNA as a genome, which is the sole source for endonuclease assay for a single strand break in the fmol range. Therefore, it is important to isolate PM2 DNA with low control nicks for the endonuclease assay. Usually, the isolation method of phage DNA is to use ultracentrifugation which takes at least 4 days. In this report, a fast and effective method which takes only 2 days was developed to purify DNA using polyethylene glycol (PEG) 8000 and the yields of phage DNA isolated by these two methods were compared. The method using PEG 8000 increased the yield of PM2 DNA from 31.2% to 45.2%, and decreased the nick from 17.1% to 13.1%. Recently, the complete PM2 DNA genome sequence of 10,079 bp was published. The exact number of nucleotides of PM2 DNA is important for the correct enzyme assay which measures nicks generated by an endonuclease. The correct calculation of endonuclease activity of rpS3 for nick-circle assay was performed to measure single-strand breaks in this report. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Oxidative stress is an unavoidable byproduct of aerobic life. Molecular oxygen is essential for terrestrial metabolism, but it also takes part in many damaging reactions within living organisms. The combination of aerobic metabolism and iron, which is another vital compound for life, is enough to produce radicals through Fenton chemistry and degrade cellular components. DNA degradation is arguably the most damaging process involving intracellular radicals, as DNA repair is far from trivial. The assay presented in this article offers a quantitative technique to measure and visualize the effect of molecules and enzymes on radical-mediated DNA damage.The DNA protection assay is a simple, quick, and robust tool for the in vitro characterization of the protective properties of proteins or chemicals. It involves exposing DNA to a damaging oxidative reaction and adding varying concentrations of the compound of interest. The reduction or increase of DNA damage as a function of compound concentration is then visualized using gel electrophoresis. In this article we demonstrate the technique of the DNA protection assay by measuring the protective properties of the DNA-binding protein from starved cells (Dps). Dps is a mini-ferritin that is utilized by more than 300 bacterial species to powerfully combat environmental stressors. Here we present the Dps purification protocol and the optimized assay conditions for evaluating DNA protection by Dps.  相似文献   

13.
Attomole (10(-18)mol) levels of RNA and DNA isolated from beer spoilage bacterial cells Lactobacillus brevis have been detected by the electrochemical sandwich DNA hybridization assay exploiting enzymatic activity of lipase. DNA sequences specific exclusively to L. brevis DNA and RNA were selected and used for probe and target DNA design. The assay employs magnetic beads (MB) modified with a capture DNA sequence and a reporter DNA probe labeled with the enzyme, both made to be highly specific for L. brevis DNA. Lipase-labeled DNAs captured on MBs in the sandwich assay were collected on gold electrodes modified with a ferrocene (Fc)-terminated SAM formed by aliphatic esters. Lipase hydrolysis of the ester bond released a fraction of the Fc redox active groups from the electrode surface, decreasing the electrochemical signal from the surface-confined Fc. The assay, shown to be efficient for analysis of short synthetic DNA sequences, was ineffective with genomic double stranded bacterial DNA, but it allowed down to 16 amole detection of 1563 nts long RNA, isolated from bacterial ribosomes without the need for PCR amplification, and single DNA strands produced from ribosomal RNA. No interference from E. coli RNA was registered. The assay allowed analysis of 400 L. brevis cells isolated from 1L of beer, which fits the "alarm signal" range (from 1 to 100 cells per 100mL).  相似文献   

14.
The analysis of DNA damage by mean of Comet or single cell gel electrophoresis (SCGE) assay has been commonly used to assess genotoxic impact in aquatic animals being able to detect exposure to low concentrations of contaminants in a wide range of species. The aims of this work were 1) to evaluate the usefulness of the Comet to detect DNA strand breakage in dolphin leukocytes, 2) to use the DNA diffusion assay to determine the amount of DNA strand breakage associated with apoptosis or necrosis, and 3) to determine the proportion of DNA strand breakage that was unrelated to apoptosis and necrosis. Significant intra-individual variation was observed in all of the estimates of DNA damage. DNA strand breakage was overestimated because a considerable amount (~29%) of the DNA damage was derived from apoptosis and necrosis. The remaining DNA damage in dolphin leukocytes was caused by factors unrelated to apoptosis and necrosis. These results indicate that the DNA diffusion assay is a complementary tool that can be used together with the Comet assay to assess DNA damage in bottlenose dolphins.  相似文献   

15.
The formation of DNA three-way junction (3WJ) structures has been utilised to develop a novel isothermal nucleic acid amplification assay (SMART) for the detection of specific DNA or RNA targets. The assay consists of two oligonucleotide probes that hybridise to a specific target sequence and, only then, to each other forming a 3WJ structure. One probe (template for the RNA signal) contains a non-functional single-stranded T7 RNA polymerase promoter sequence. This promoter sequence is made double-stranded (hence functional) by DNA polymerase, allowing T7 RNA polymerase to generate a target-dependent RNA signal which is measured by an enzyme-linked oligosorbent assay (ELOSA). The sequence of the RNA signal is always the same, regardless of the original target sequence. The SMART assay was successfully tested in model systems with several single-stranded synthetic targets, both DNA and RNA. The assay could also detect specific target sequences in both genomic DNA and total RNA from Escherichia coli. It was also possible to generate signal from E.coli samples without prior extraction of nucleic acid, showing that for some targets, sample purification may not be required. The assay is simple to perform and easily adaptable to different targets.  相似文献   

16.
Molecular beacons for detecting DNA binding proteins   总被引:9,自引:0,他引:9  
We report here a simple, rapid, homogeneous fluorescence assay, the molecular beacon assay, for the detection and quantification of sequence-specific DNA-binding proteins. The central feature of the assay is the protein-dependent association of two DNA fragments each containing about half of a DNA sequence defining a protein-binding site. Protein-dependent association of DNA fragments can be detected by any proximity-based spectroscopic signal, such as fluorescence resonance energy transfer (FRET) between fluorochromes introduced into these DNA molecules. The assay is fully homogeneous and requires no manipulations aside from mixing of the sample and the test solution. It offers flexibility with respect to the mode of signal detection and the fluorescence probe, and is compatible with multicolor simultaneous detection of several proteins. The assay can be used in research and medical diagnosis and for high-throughput screening of drugs targeted to DNA-binding proteins.  相似文献   

17.
J R Hutton  C A Thomas 《Biochemistry》1975,14(7):1432-1436
The ATP-dependent endonuclease from Hemophilus influenzae is relatively inactive on closed or open DNA rings, yet rapidly hydrolyzes single- or double-chained linear DNA. This enzyme in combination with an exonuclease (exo VII) has been shown to spare various circular DNA molecules including those having single-chain regions of significant length. However, rings containing single-chained regions are broken at a rate depending on the length of these regions. By admixing a linear DNA of alternate radiolabel, a simple assay for DNA rings has been developed. The application of this procedure to the assay of folded rings from Drosophila DNA is demonstrated.  相似文献   

18.
We performed a real-time PCR assay to detect herpes simplex virus (HSV) DNA, and compared it prospectively with a nested PCR assay in 164 clinical samples (109 cerebrospinal fluid and 55 sera) from patients suspected of having neonatal HSV infection or HSV encephalitis. In 25 of 164 samples, HSV DNA was detected by the nested PCR assay. All samples positive for HSV DNA in the nested PCR assay were also positive in the real-time PCR assay, and all but two samples negative for HSV DNA in the nested assay were negative in the real-time assay. The real-time PCR assay thus had a sensitivity of 100% and a specificity of 99%, when compared with the nested assay. Sequential assays in a case of disseminated HSV showed that a decrease in HSV DNA paralleled clinical improvement. Quantification of HSV DNA by real-time PCR was useful for diagnosing and monitoring patients with HSV encephalitis and neonatal HSV infection.  相似文献   

19.
A microfluorometric assay has been developed for the quantitation of de novo DNA synthesis. The assay reliably detects newly synthesized DNA in individual cells and provides a relative measure of the proportion of new DNA in each cell. When combined with microscopic techniques for cell identification, selected subpopulations can be examined in samples containing a complex mixture of interacting cell types. The assay employs the quenching of Hoechst-33258 fluorescence by bromodeoxyuridine incorporated into newly synthesized DNA. The ability of BUdR to quench H-33258 fluorescence is lost after a brief exposure of ultraviolet fluorescence excitation. Therefore, quenched and unquenched fluorescence intensity measurements from the same cell can be compared. Increases in fluorescence intensity occur only in cells that have synthesized DNA after the addition of BUdR. In addition the change in fluorescence intensity is proportional to the degree of BUdR substitution within the range of the assay and provides a relative measure of DNA synthesis.  相似文献   

20.
An activity gel assay was developed for the detection of DNA helicases in crude extracts. The assay was based on the ability of DNA helicases to unwind radioactive fragments from single-stranded M13 circles that were immobilized in an SDS polyacrylamide gel. The displaced radioactive strands were detected by blotting them to a filter and visualizing the resulting bands by autoradiography. Experiments with purified proteins demonstrated that DNA helicases, endonucleases and exonucleases could produce activity bands. A one-dimensional gel assay was sufficiently sensitive to allow detection of DNA helicase I, DNA helicase II, DNA helicase IV, the RecQ helicase as well as 3 unidentified putative DNA helicases in crude extracts of Escherichia coli. Exonuclease and endonuclease activities from crude extracts could be distinguished from DNA helicase activities by their ATP-independence and from each other by their band morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号