首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The photobiogenesis and metabolism of vitamin D.   总被引:5,自引:0,他引:5  
Provitamin D3 (7-dehydrocholesterol) is converted to previtamin D3 by the action of ultraviolet radiation on the skin. Previtamin D3 thermally isomerizes to vitamin D3 in the skin and the vitamin is then transported to the liver on the vitamin D-binding protein. Although there are extrahepatic vitamin D-25-hydroxylases, the liver is the major site for the 25-hydroxylation of vitamin D. In response to hypocalcemia and hypophosphatemia, 25-OH-D is metabolized by a renal-cytochrome. P450-dependent mixed function oxidase system is 1alpha,25(OH)2D. When calcium and phosphate homeostasis prevails the renal 25-OH-D-1alpha-hydroxylase activity is limited and instead a non-cytochrome P450 mixed function oxidase metabolizes 25-OH-D to 24R,25(OH)2D. Parathyroid hormone has clearly been shown to be a trophin for the renal synthesis of 1,25(OH)2D; however, the role and significance of the adrenal steroids, or gonadal and pituitary hormones, on the renal 25-OH-D-1alpha-hydroxylase is not well defined. The regulation of the photometabolism of provitamin D3 to vitamin D3, the role and significance of the side-chain metabolism of 1,25(OH)2D by the small intestine, and the metabolism of 25-OH-D to 24R,25(OH)2D by chondrocytes and its stimulation of protein synthesis in these cells are just a few issues that will require further investigation.  相似文献   

5.
6.
7.
8.
The regulation of folate and methionine metabolism.   总被引:12,自引:7,他引:5       下载免费PDF全文
H A Krebs  R Hems    B Tyler 《The Biochemical journal》1976,158(2):341-353
1. The isolated perfused rat liver and suspensions of isolated rat hepatocytes fail to form glucose from histidine, in contrast with the liver in vivo. Both rat liver preparations readily metabolize histidine. The main end product is N-formiminoglutamate. In this respect the liver preparations behave like the liver of cobalamin- or folate-deficient mammals. 2. Additions of L-methionine in physiological concentrations (or of ethionine [2-amino-4-(ethylthio)butyric acid]) promotes the degradation of formiminoglutamate, as is already known to be the case in cobalamin of folate deficiency. Added methionine also promotes glucose formation from histidine. 3. Addition of methionine accelerates the oxidation of formate to bicarbonate by hepatocytes. 4. A feature common to cobalamin-deficient liver and the isolated liver preparations is taken to be a low tissue methionine concentration, to be expected in cobalamin deficiency through a decreased synthesis of methionine and caused in liver preparations by a washing out of amino acids during the handling of the tissue. 5. The available evidence is in accordance with the assumption that methionine does not directly increase the catalytic capacity of formyltetrahydrofolate dehydrogenase; rather, that an increased methionine concentration raises the concentration of S-adenosylmethionine, thus leading to the inhibition of methylenetetrahydrofolate reductase activity [Kutzbach & Stokstad (1967) Biochim. Biophys. Acta 139, 217-220; Kutzbach & Stokstad (1971) Methods Enzymol. 18B, 793-798], that this inhibition causes an increase in the concentration of methylenetetrahydrofolate and the C1 tetrahydrofolate derivatives in equilibrium with methylenetetrahydrofolate, including 10-formyltetrahydrofolate; that the increased concentration of the latter accelerates the formyltetrahydrofolate dehydrogenase reaction, because the normal concentration of the substrate is far below the Km value of the enzyme for the substrate. 6. The findings are relevant to the understanding of the regulation of both folate and methionine metabolism. When the methionine concentration is low, C1 units are preserved by the decreased activity of formyltetrahydrofolate dehydrogenase and are utilized for the synthesis of methionine, purines and pyrimidines. On the other hand when the concentration of methionine, and hence adenosylmethionine, is high and there is a surplus of C1 units as a result of excess of dietary supply, formyltetrahydrofolate dehydrogenase disposes of the excess. When ample dietary supply causes an excess of methionine, which has to be disposed of by degradation, the increased activity of formyltetrahydrofolate dehydrogenase decreases the supply of methyltetrahydrofolate. Thus homocysteine, instead of being remethylated, enters the pathway of degradation via cystathionine. 7. The findings throw light on the biochemical abnormalities associated with cobalamin deficiency (megaloblastic anaemia), especially on the 'methylfolate-trap hypothesis'. This is discussed. 8...  相似文献   

9.
10.
11.
12.
13.
14.
15.
Accumulation of lysophosphatidylcholine in gall-bladder bile is involved in the pathogenesis of acute cholecystitis. [1-14C]oleoyl- or [1-14C]palmitoyl-lysophosphatidylcholine was thus instilled in the in situ guinea pig gall-bladder and the absorption and metabolism of the lipid were determined. We found that, after 6 h instillation, 53% of the oleoyl derivative was adsorbed by the gall-bladder, whereasee only 37% of the palmitoyl derivative was absorbed. Although some differences in the metabolism of these two lipids were observed, a major portion of the absorbed radioactivity was found in the gall-bladder wall as phosphatidylcholine. To determine the mechanism of phosphatidylcholine formation from lysophosphatidylcholine by the gall-bladder mucosa, we used lysophosphatidylcholine which was labelled in the fatty acid moiety with 14C and in the choline moiety with 3H. Our data suggest that the mechanism of phosphatidylcholine formation from lysophosphatidylcholine involved acylation with an acyl donor other than a second molecule of lysophosphatidylcholine. We hypothesize that this mechanism as well as others described serve to prevent accumulation of lysophosphatidylcholine within the gall-bladder lumen and thus prevent damage to the gall-bladder mucosa.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号