首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the effects of various phosphorus concentrations (10, 50, 250 and 500 mg l(-1) K(2)HPO(4)) on the biomass production and composition of Arthrospira (Spirulina) platensis in relation to light intensity (24, 42 and 60 μE m(-2) s(-1)). The maximum biomass production was 3,592 ± 392 mg l(-1) and this was observed in 250 mg l(-1) K(2)HPO(4) at 60 μE m(-2) s(-1) light intensity after 32 days of cultivation. A maximum specific growth rate (μ(max)) of 0.55 d(-1) was obtained in 500 mg l(-1) K(2)HPO(4) at 60 μE m(-2) s(-1). The protein, lipid and chlorophyll contents of the biomass varied from 33.59 to 60.57 %, 5.34 to 13.33 % and 0.78 to 2.00 %, respectively. The most significant finding was that phosphorus limitation (10 mg l(-1) K(2)HPO(4)) caused a drastic increase of the carbohydrate content (59.64 %). The effect of phosphorus limitation on the carbohydrate content was independent of the light intensity. The accumulated carbohydrates are proposed to be used as substrate for biofuel generation via one of the appropriate biomass energy conversion technologies. Also, it was observed that phosphorus removal is a function of biomass density, phosphorus concentration and light intensity.  相似文献   

2.
Cultivation of Spirulina platensis using ammonium salts or wastewater containing ammonium as alternative nitrogen sources is considered as a commercial way to reduce the production cost. In this research, by analyzing the relationship between biomass production and ammonium- N consumption in the fed-batch culture of Spirulina platensis using ammonium bicarbonate as a nitrogen nutrient source, an online adaptive control strategy based on optical density (OD) measurements for controlling ammonium feeding was presented. The ammonium concentration was successfully controlled between the cell growth inhibitory and limiting concentrations using this OD-based feedback feeding method. As a result, the maximum biomass concentration (2.98 g/l), productivity (0.237 g/l·d), nitrogen-to-cell conversion factor (7.32 gX/gN), and contents of protein (64.1%) and chlorophyll (13.4 mg/g) obtained by using the OD-based feedback feeding method were higher than those using the constant and variable feeding methods. The OD-based feedback feeding method could be recognized as an applicable way to control ammonium feeding and a benefit for Spirulina platensis cultivations.  相似文献   

3.
Improving Spirulina platensis biomass yield using a fed-batch process   总被引:6,自引:0,他引:6  
Increasing interest is being shown in the cyanobacterium Spirulina platensis because of its nutritional properties when used as food supplement and possible therapeutic effects. One of the most important areas being studied is the development of alternative nutrient sources which can be used to decrease the production costs of commercially produced S. platensis and obtain high productivity. Water from Mangueira Lagoon (Rio Grande do Sul State, Brazil) has high levels of carbonates and a high pH and has the potential to be used as a culture medium for S. platensis, although some nutrient supplementation may be required. We tested the effect of unsupplemented Mangueira Lagoon water (MLW) or MLW supplemented with 1.125 or 2.250 mg/l of urea and/or 21 or 42 mg/l of sodium bicarbonate on the growth of S. platensis in fed-batch culture using a 3(2) factorial design and found that there the addition of 1.125 mg/l of urea resulted in a 2.67 fold increase times in the final biomass concentration of S. platensis.  相似文献   

4.
The red microalga Porphyridium contains many valuable compounds such as polysaccharides, polyunsaturated fatty acids, and phycoerythrin (PE). In this study, a uniform design method and regression analysis were used to investigate the effects of initial pH, light intensity, inoculation ratio, and liquid volume in flask on the optimal biomass, exopolysaccharides (EPS), and PE production of Porphyridium cruentum in a batch culture at laboratory scale. Using regression analysis, we obtained the models to clarify the effects of individual factors and their interactions on the biomass, EPS, and PE production of P. cruentum. The optimal condition for the biomass was the following: pH 5.0, light intensity 7098.0 lx, inoculation ratio 1:17.2, and liquid volume 100.0 ml; for EPS was pH 5.0, light intensity 4501.0 lx, inoculation ratio 1:20, and liquid volume 100.3 ml; while pH 8.0, light intensity 7100.0 lx, inoculation ratio 1:20, and liquid volume 100.3 ml was the best for PE production. The maximum biomass 3.27 g/l, EPS production 543.1 mg/l, and PE production 132.0 mg/l were demonstrated by confirmatory experiment to the optimum culture conditions in a reciprocal shaker. The statistical methods used in the present study are useful strategies for optimizing of culture conditions for other microalgae.  相似文献   

5.
This study dealt with the influence of both the feeding time and light intensity on the fed-batch culture of the cyanobacterium Spirulina (Arthrospira) platensis using ammonium chloride as a nitrogen source. For this purpose, a 2(2) plus star central composite experimental design combined with response surface methodology was employed, and the maximum cell concentration (X(m)), the cell productivity (P(X)), and the yield of biomass on nitrogen (Y(X/N)) were selected as the response variables. The optimum values of X(m) (1,833 mg L(-1)) and Y(X/N) (5.9 g g(-1)) estimated by the model at light intensity of 13 klux and feeding time of 17.2 days were very close to those obtained experimentally under these conditions (X(m) = 1,771 +/- 41 mg L(-1); Y(X/N) = 5.7 +/- 0.17 g g(-1)). The cell productivity was a decreasing function of the ammonium chloride feeding time and a quadratic function of the light intensity. The protein and lipid contents of dry biomass collected at the end of cultivations were shown to decrease with increasing light intensity.  相似文献   

6.
We examined responses of batch cultures of the marine microalga Nannochloropsis sp. to combined alterations in salinity (13, 27, and 40 g/l NaCl) and light intensity (170 and 700 μmol photons/m2·s). Major growth parameters and lipid productivity (based on total fatty acid determination) were determined in nitrogen-replete and nitrogen-depleted cultures of an initial biomass of 0.8 and 1.4 g/l, respectively. On the nitrogen-replete medium, increases in light intensity and salinity increased the cellular content of dry weight and lipids due to enhanced formation of triacylglycerols (TAG). Maximum average productivity of ca. 410 mg TFA/l/d were obtained at 700 μmol photons/m2·s and 40 g/l NaCl within 7 days. Under stressful conditions, content of the major LC-PUFA, eicosapentaenoic acid (EPA), was significantly reduced while TAG reached 25% of biomass. In contrast, lower salinity tended to improve major growth parameters, consistent with less variation in EPA contents. Combined higher salinity and light intensity was detrimental to lipid productivity under nitrogen starvation; biomass TFA content, and lipid productivity amounted for only 33% of DW and ca. 200 mg TFA/l/day, respectively. The highest biomass TFA content (ca. 47% DW) and average lipid productivity of ca. 360 mg TFA/l/day were achieved at 13 g/l NaCl and 700 μmol photons/m2·s. Our data further support selecting Nannochloropsis as promising microalgae for biodiesel production. Moreover, appropriate cultivation regimes may render Nannochloropsis microalgae to produce simultaneously major valuable components, EPA, and TAG, while sustaining relatively high biomass growth rates.  相似文献   

7.
Rhodospirillum rubrum was grown under light anaerobic conditions with phycocyanin (C-pc) extracted from Spirulina platensis as the sole source of carbon and nitrogen. When grown under these conditions cellular components like lipids, carbohydrates, protein, carotenoids, bacteriochlorophyll were similar to the one grown with malic acid and ammonium chloride. Growth of R. rubrum increased with increase in concentration of C-pc (200 to 1000 mg/l). R. rubrum also utilized C-pc under dark anaerobic condition. With both malic acid and C-pc as carbon sources C-pc was consumed only after exhaustion of malic acid under light anaerobic condition. No aberration of cell morphology was seen under scanning electron microscope (SEM). R. rubrum utilized both phycocyanobilin and phycoprotein individually as well as in combination. When grown with 1000 mg/l of phycoprotein 450 mg/l of biomass was obtained, and with combination of phycocyanobilin (75 mg/l) and phycoprotein (925 mg/l) 610 mg/l of biomass was obtained. Phycocyanobilin alone did not inhibit the growth of R. rubrum. Utilization of C-pc with protease like activity was observed in plate assay. Protease like activity was also observed as zones around the colonies in plates containing sterilized casein, gelatin and filter sterilized bovine serum albumin. No amino acids were detected in the supernatant when analyzed with ninhydrin. Extracellular protease like activity was highest when C-pc was used as substrate (2.8 U/ml). Intracellular protease like activity was not detected in cell free extracts.  相似文献   

8.
Arthrospira platensis was cultivated photoautotrophically at 6.0 klux light intensity in 5.0-L open tanks, using a mineral medium containing urea as nitrogen source. Fed-batch experiments were performed at constant flowrate. A central composite factorial design combined to response surface methodology (RSM) was utilized to determine the relationship between the selected response variables (cell concentration after 10 days, X(m), cell productivity, P(X), and nitrogen-to-cell conversion factor, Y(X/N)) and codified values of the independent variables (pH, temperature, T, and urea flowrate, K). By applying the quadratic regression analysis, the equations describing the behaviors of these responses as simultaneous functions of the selected independent variables were determined, and the conditions for X(m) and P(X) optimization were estimated (pH 9.5, T = 29 degrees C, and K = 0.551 mM/day). The experimental data obtained under these conditions (X(m) = 749 mg/L; P(X) = 69.9 mg/L.day) were very close to the estimated ones (X(m) = 721 mg/L; P(X) = 67.1 mg/L.day). Additional cultivations were carried out under the above best conditions of pH control and urea flowrate at variable temperature. Consistently with the results of RSM, the best growth temperature was 29 degrees C. The maximum specific growth rates at different temperatures were used to estimate the thermodynamic parameters of growth (DeltaH* = 59.3 kJ/mol; DeltaS* = -0.147 kJ/mol.K; DeltaG* = 103 kJ/mol) and its thermal inactivation (DeltaH(D) (o) = 72.0 kJ/mol; DeltaS(D) (o) = 0.144 kJ/mol.K; DeltaG(D) (o) = 29.1 kJ/mol).  相似文献   

9.
Arthrospira platensis was cultivated in tubular photobioreactor in order to evaluate growth and biomass production at variable photosynthetic photon flux density (PPFD = 60, 120, and 240 μmol photons m(-2)s(-1)) and employing three different systems for cell circulation, specifically an airlift, a motor-driven pumping and a pressurized system. The influence of these two independents variables on the maximum cell concentration (X(m)), cell productivity (P(x)), nitrogen-to-cell conversion factor (Y(X/N) ), photosynthetic efficiency (PE), and biomass composition (total lipids and proteins), taken as responses, was evaluated by analysis of variance. The statistical analysis revealed that the best combination of responses' mean values (X(m) = 4,055 mg L(-1), P(x) = 406 mg L(-1)day(-1), Y(X/N) = 5.07 mg mg(-1), total lipids = 8.94%, total proteins = 30.3%, PE = 2.04%) was obtained at PPFD = 120 μmol photons m(-2)s(-1); therefore, this light intensity should be considered as the most well-suited for A. platensis cultivation in this photobioreactor configuration. The airlift system did not exert any significant positive statistical influence on the responses, which suggests that this traditional cell circulation system could successfully be substituted by the others tested in this work.  相似文献   

10.
To investigate the feasibility of using fresh water from Mangueira Lagoon (Rio Grande do Sul, Brazil) for biomass production in open raceway ponds (0.7 m long, 0.18 m wide, 0.075 m deep) we studied the influence of nutrient addition (carbon as sodium bicarbonate, nitrogen as urea, phosphate, sulfate, ferric iron, magnesium and potassium) on the growth rate of the cyanobacteria Spirulina platensis using a 22 factorial design. In unsupplemented lagoon water production of S platensis was 0.78 +/- 0.01 g/l (dry weight basis) while the addition of 2.88 g/l of sodium bicarbonate (without added urea, phosphate, sulfate or metal ions) resulted in 0.82 +/- 0.01 g/l after 400 hours of culture. The further addition of phosphate and metal ions resulted in growth for up to 750 h and a final S. platensis biomass of 1.23 +/- 0.04 to 1.34 +/- 0.03 g/l.  相似文献   

11.
Larval growth and survival of catfishes are largely influenced by the various biotic and abiotic factors. The present study investigated the effect of different light intensities and photoperiods on growth and survival of Ompok bimaculatus larvae. Three separate trials of 21 days each were carried out in an aquarium tank. The first trial investigated the embryonic changes (based on hatching rate and time) upon exposure to varied light intensity (0, 300, 500, 900 and 1200 lx) and photoperiodic regime (24l:0d, 16l:8d, 12l:12d, 8l:16d and 0l:24d). Subsequently, hatched-out larvae were subjected to the aforementioned intensities (Trial II) and photoperiod (Trial III, intensity of 300 lx) for growth and survival attributes. Eight hundred healthy larvae (average body weight = 0.003 g) were randomly distributed into five treatment groups for the last two trials. Results suggest a higher embryo hatching rate and larval survival at 0 and 300 lx, whereas the largest larval growth was observed at 900 lx. In Trial III, survival was highest in 0l:24d and growth in 24l:0d and 16l:8d was higher (P < 0.05). Performance index was higher (P < 0.05) in both 0 and 300 lx light and decreased at higher intensities. The overall interpretation from the present study concludes that a completely dark rearing environment is recommended for better survival of O. bimaculatus although growth was compromised.  相似文献   

12.
In this work, carob pulp syrup was used as carbon source in C. cohnii fermentations for docosahexaenoic acid production. In preliminary experiments different carob pulp dilutions supplemented with sea salt were tested. The highest biomass productivity (4 mg/lh) and specific growth rate (0.04/h) were observed at the highest carob pulp dilution (1:10.5 (v/v), corresponding to 8.8 g/l glucose). Ammonium chloride and yeast extract were tested as nitrogen sources using different carob pulp syrup dilutions, supplemented with sea salt as growth medium. The best results were observed for yeast extract as nitrogen source. A C. cohnii fed-batch fermentation was carried out using diluted carob pulp syrup (1:10.5 v/v) supplemented with yeast extract and sea salt. The biomass productivity was 420 mg/lh, and the specific growth rate 0.05/h. Under these conditions the DHA concentration and DHA production volumetric rate attained 1.9 g/l and 18.5 mg/lh respectively after 100.4 h. The easy, clean and safe handling of carob pulp syrup makes this feedstock a promising carbon source for large-scale DHA production from C. cohnii. In this way, this carob industry by-product could be usefully disposed of through microbial production of a high value fermentation product.  相似文献   

13.
The effects of nitrate, ammonium, and urea as nitrogen sources on the heterotrophic growth of Chlorella protothecoides were investigated using flask cultures. No appreciable inhibitory effect on the algal growth was observed over a nitrogen concentration range of 0.85-1.7 g l(-)(1). In contrast, differences in specific growth rate and biomass production were found among the cultures with the various nitrogen compounds. The influence of different nitrogen sources at a concentration equivalent to 1.7 g l(-)(1) nitrogen on the heterotrophic production of biomass and lutein by C. protothecoides was investigated using the culture medium containing 40 g l(-)(1) glucose as the sole carbon and energy source in fermentors. The maximum biomass concentrations in the three cultures with nitrate, ammonium, and urea were 18.4, 18.9, and 19.6 g l(-)(1) dry cells, respectively. The maximum lutein yields in these cultures were between 68.42 and 83.81 mg l(-)(1). The highest yields of both biomass and lutein were achieved in the culture with urea. It was therefore concluded that urea was the best nitrogen source for the production of biomass and lutein. Based on the experimental results, a group of kinetic models describing cell growth, lutein production, and glucose and nitrogen consumption were proposed and a satisfactory fit was found between the experimental results and predicted values. Dynamic analysis of models demonstrated that enhancing initial nitrogen concentration in fermentor cultures, which correspondingly enhances cell growth and lutein formation, may shorten the fermentation cycle by 25-46%.  相似文献   

14.
The present investigation makes a comparative investigation of individual light source on the different commercially important pigments in Spirulina fussiformis in photobioreactor culture condition. Continuous culture system was carried out throughout the experimental condition. Initially, seed culture, corresponding to 0.2 g/L on dry weight basis was cultivated in Zarrouks medium with different colored light source in reactor. Maximum daily biomass productivity, 0.8 g/L, 0.75 g/L and 0.69 g/L in white light (WL), blue light (BL) and green light (GL), respectively, conditions was noticed. Pigment content during WL treatment showed the highest accumulation (5.5 microg/mL) of chlorophyll whereas, other pigments roughly remained constant without much change, implying WL intensity is better for chlorophyll synthesis. On the other hand, chlorophyll and phycocyanin content gradually increased up to 7 microg/mL and 2 mg/mL, respectively, at BL intensity. The response to GL was negative to all pigments studied except for phycocyanin; in this case a highest production (2.5 mg/mL) was seen during 18 days experimental period. Additionally, when yellow light (YL) treatment experiments were conducted, the rate of production gradually decreased from 6th day onward in all pigments demonstrating the photobleaching effect of YL. The average rate of pigments production did not show significant accumulation in red light (RL) light treatment except phycoerythrin which showed an increasing trend of production. It is worth to mention here that higher light intensity is better for production of phycocyanin and phycoerythrin in Spirulina.  相似文献   

15.
用管式光生物反应器培养螺旋藻的研究   总被引:9,自引:0,他引:9  
微藻大规模培养主要有敞开式大池培养和封闭式光生物反应器培养两种主要方式。管式光生物反应器是封闭式光生物反应器的主要类型之一。与其它类型相比,管式光生物反应器放大较易,成本较低。国外关于管式光生物反应器已有不少研究[1~3]但关于管式光生物反应器产率与光强和光暗比的关系等方面的研究尚未得出明确的结论。国内管式光生物反应器的研究较少[4],尚未见有关管式光生物反应器中微藻悬浮液流变特性基础参数和产率影响因素的报道。螺旋藻是丝状体蓝藻,螺旋藻蛋白质含量高,其蛋白质所含必需氨基酸丰富,是国内外大规模商业…  相似文献   

16.
鱼腥藻1017株的混合营养型生长   总被引:8,自引:1,他引:8  
鱼腥藻1017株混合营养型生长有其特点,外源葡萄糖对生长的刺激不仅在低光强(800lx),而且在高光强(7000lx)也表现出来。其混合营养型生长速率在800-7000lx范围内随光照强度的增加而增加,在葡萄糖浓度5-20mmol/L范围内随外源葡萄糖浓度增加而增加。鱼腥藻1017株混合营养型生长与光能自养生长相比,生长速率明显提高,对数生长期延长,收获物浓度显著增高,生物量显著提高。  相似文献   

17.
Light supply is one of the most important factors affecting autotrophic growth of microalgae. This study investigated the effect of the type and light intensity of artificial light sources on the cell growth of an indigenous microalga Chlorella vulgaris ESP‐31 obtained from southern Taiwan. In addition, a dissolved inorganic carbon source (i.e. sodium bicarbonate) was used to improve the biomass production of strain ESP‐31. The results show that a new fluorescent light source (TL5) was effective in indoor cultivation of microalgae. Better overall productivity of 0.029 g dry cell weight/L‐d was obtained when using TL5 lamps as the light source with a light intensity of 9 W/m2. A carbon source (sodium bicarbonate) concentration of 1000 mg/L was found to be optimal for the growth of strain ESP‐31 in terms of both biomass production and carbon source utilization. Under the optimal growth conditions, the resulting microalgal biomass consisted of 25–30% protein, 6–10% carbohydrate, and 30–40% lipid.  相似文献   

18.
光照强度对筛豆龟蝽生长发育及繁殖的影响   总被引:1,自引:0,他引:1  
许喆  崔娟  毕锐  高宇  史树森 《昆虫学报》2019,62(5):645-652
【目的】为明确光照强度对筛豆龟蝽 Megacopta cribraria 种群生长发育及生殖力的影响,进一步探索筛豆龟蝽对光环境的适应规律。【方法】在温度24±1℃,相对湿度60%±10%,光周期 16L ∶8D 条件下,通过测定寄主植物大豆上筛豆龟蝽在不同光照强度(500, 2 500, 4 500, 6 500, 8 500 和10 500 lx)下的生长发育及繁殖指标,包括各虫态发育历期、成虫寿命、存活率、若虫期营养积累效率等;利用生命表方法进一步分析光照强度对种群趋势变化的影响。【结果】光照强度对筛豆龟蝽各虫态发育历期、存活率以及成虫生殖力等均产生显著影响。各阶段的发育历期有随光照强度增加而缩短的趋势,其发育速率和若虫期营养积累效率均与光照强度呈显著正相关。各阶段发育速率与光照强度的关系模型分别为:卵期 V 1= 0.129968exp(0.011310 L I)(R^2=0.610, P <0.0001),若虫期 V 2=0.000767LI^0.014182 ( R^2 =0.980, P <0.0001),雌虫产卵前期 V 3=0.019000 L 0.418000 I ( R^2 =0.837, P <0.0001);若虫期营养积累效率与光照强度之间符合三次函数模型 y =0.0004 x^3-0.0064 x^2+0.0361 x +0.0660 ( R^2 =0.983, P <0.0001);筛豆龟蝽种群趋势指数 I 随光照强度增加而显著增大,光照强度低于2 500 lx时,其种群不能完成生殖过程。【结论】光照强度可显著影响筛豆龟蝽种群生长发育及生殖力。较高的光照强度(10 500 lx)更有利于其种群数量增长,而较低的光照强度(≤2 500 lx)将导致种群逐渐消亡。  相似文献   

19.
The influence of the degree and mode of light limitation on growth characteristics of turbidostat cultures of Rhodobacter capsulatus was investigated using mass and energy balance regularities. Light limitation was achieved by increasing the steady-state biomass concentration at constant incident light intensity ( approximately 100 W/m(2)) or by decreasing the incident light intensity at constant steady-state biomass concentration ( approximately 500 mg of dry biomass/L). It was shown that under conditions of light limitation of Rh. capsulatus, the content of P and N in the biomass as well as the biomass degree of reduction were determined by the growth rate of the cultures. The energetic yield of biomass of Rh. capsulatus and total bacteriochlorophyll a content increased when light limitation increased. These parameters were higher in the cultures, in which light limitation was achieved by lowering the incident light intensity at low biomass concentration. This seems to be due to different distribution of light within the photobioreactor when dissimilar modes of light limitation were used.  相似文献   

20.
This study investigated the effects of various culture parameters (carbon sources, temperature, initial pH of culture, NaCl concentration, and light) on the growth and canthaxanthin production by Dietzia natronolimnaea HS-1. The results showed that the most effective carbon source for growth and canthaxantin production was glucose, and the best pH and temperature were 7 and 31 degrees C, respectively. In addition, the biomass and canthaxanthin production increased in a medium without NaCl and in the presence of light. Under the optimized conditions, the maximum biomass, total carotenoid, and canthaxanthin production were 6.12 +/- 0.21 g/l, 4.51 +/- 0.20 mg/l, and 4.28 +/- 0.15 mg/l, respectively, in an Erlenmeyer flask system, yet increased to 7.25 g/l, 5.48 mg/l, and 5.29 mg/l, respectively, in a batch fermenter system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号