首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.

Background

Hyperglycemia increases the risk of gastric cancer in H. pylori-infected patients. High glucose could increase endothelial permeability and cancer-associated signaling. These suggest high glucose may affect H. pylori or its infected status.We used two strains to investigate whether H. pylori growth, viability, adhesion and CagA-phosphorylation level in the infected-AGS cells were influenced by glucose concentration (100, 150, and 200 mg/dL).

Results

The growth curves of both strains in 200 mg/dL of glucose were maintained at the highest optimal density after 48 h and the best viability of both strains were retained in the same glucose condition at 72 h. Furthermore, adhesion enhancement of H. pylori was significantly higher in 200 mg/dL of glucose as compared to that in 100 and 150 mg/dL (p < 0.05). CagA protein also increased in higher glucose condition. The cell-associated CagA and phosphorylated-CagA was significantly increased in 150 and 200 mg/dL of glucose concentrations as compared to that of 100 mg/dL (p < 0.05), which were found to be dose-dependent.

Conclusion

Higher glucose could maintain H. pylori growth and viability after 48 h. H. pylori adhesion and CagA increased to further facilitate the enhancement of cell-associated CagA and phosphorylated CagA in higher glucose conditions.  相似文献   

4.
CagA protein is the most assessed effecter molecule of Helicobacter pylori. In this report, we demonstrate how CagA protein regulates the functions of dendritic cells (DC) against H. pylori infection. In addition, we found that CagA protein was tyrosine-phosphorylated in DC. The responses to cagA-positive H. pylori in DC were reduced in comparison to those induced by cagA-negative H. pylori. CagA-overexpressing DC also exhibited a decline in the responses against LPS stimulation and the differentiation of CD4+ T cells toward Th1 type cells compared to wild type DC. In addition, the level of phosphorylated IRF3 decreased in CagA-overexpressing DC stimulated with LPS, indicating that activated SHP-2 suppressed the enzymatic activity of TBK1 and consequently IRF3 phosphorylation. These data suggest that CagA protein negatively regulates the functions of DC via CagA phosphorylation and that cagA-positive H. pylori strains suppress host immune responses resulting in their chronic colonization of the stomach.  相似文献   

5.
The domains of virulent (Ureα/β, VacA-p55, and CagA) factors of Helicobacter pylori play a pivotal role in developmentalprocesses of numerous diseases including gastric cancer. The pharmacological role of curcumin indicates that it could regulate thesignaling of virulent factors by interacting with active domains. However, the controlling mechanism of the curcumin interactionsand the binding diversity on structural basis of virulent (Ureα/β, VacA-p55, and CagA) factors are unknown. Curcumin astherapeutic agent was filtered by using Lipinski rule׳s five and the druglikeness property for assessment of pharmacologicalproperties. Here outcome of molecular docking presented the 3-D structure of curcumin complex, that interacted with especiallyconserved residues of target domains. The structure revealed that the curcumin complexation with domains of these proteinsprovided structural insight into the diverse nature of proteins (Ureα/β, VacA-p55, and CagA) recognition. In silico studyelucidated that the broad specificity of curcumin was achieved by multiple binding mode mechanisms such as distinct hydrogenand hydrophobic interactions with involvement of binding energy. The higher score of curcumin in complexation with bothsubunits Ureα/β showed the stable binding, and less stability with VacA-p55 complexation with lower score. Curcumin exhibitedgood interaction with these targeted virulent factors, although extensive interactions of curcumin with Ureα/β subunits could havean important implication to prevent survival and colonisation of H. pylori in stomach.  相似文献   

6.
Helicobacter pylori bacteria colonize the gastric mucosa of more than half of the world's human population and its infection may instigate a wide spectrum of gastric diseases in the host. At the moment, there is no vaccine against H. pylori, a microorganism recognized as a category 1 human carcinogen, and treatment is limited to antibiotic management. Pioneering antigenic studies carried out by Penner and co-workers, which employed homologous H. pylori antisera specific for cell-surface lipopolysaccharide (LPS), revealed the presence of six distinct H. pylori serotypes (O1 to O6). Subsequent studies have shown that H. pylori serotype O1 expressed LPS with lengthy O-chain polysaccharide (PS) composed of Lewis blood-group structures ('Lewis O-chains'), serotype O3 LPS produced 'Lewis O-chains' attached to a heptoglycan domain, serotype O4 LPS possessed LPS with glucosylated 'Lewis O-chains' and serotype O6 LPS expressed the heptoglycan domain capped by a short 'Lewis O-chain'. These LPSs were terminated at the reducing-end by a core oligosaccharide and lipid A of conserved structures. With the intent of formulating a multivalent H. pylori LPS-based vaccine, we are studying the structural variability of H. pylori cell-surface glycans. Here, we describe the novel LPS structure produced by H. pylori serotype O2 that differed markedly from the typical H. pylori 'Lewis O-chain' structures, in that its main component was an elongated PS composed of alternating 2-, and 3-monosubstituted alpha-D-Glcp residues [-->2)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]n. These findings revealed the bio-molecular basis for the observed serospecificity of H. pylori serotype O2, and that this unique bacterial PS must be included in the formulation of a multivalent LPS H. pylori vaccine.  相似文献   

7.
The efficiency of Helicobacter pylori as a mucosal pathogen is caused by unique soluble and integral membrane proteins, which allow its survival at acidic pH and successful colonization of the gastric environment. With about one-fourth of the H. pylori's proteome comprising integral membrane proteins, the need for solution of their three-dimensional (3D) structures becomes persistent as it can potentially drive the generation of more effective drugs. This study presents a medium-throughput approach for cloning and expression screening of integral membrane proteins from H. pylori (26695) using Escherichia coli as the expression host. One-hundred sixteen H. pylori targets were cloned into two different vector systems and heterologously expressed in E. coli. Eighty-four percent of these proteins displayed medium to high expression. No clear-cut correlation was found between expression levels and number of putative transmembrane spans, predicted functionality, and molecular mass. Nonetheless, expression of transporters and hypothetical proteins < or =40 kDa with two to four transmembrane spans displayed generally high expression levels. To statistically strengthen the quality of the data from the medium-throughput approach, a comparison with data derived from robotic-based methodologies was conducted. Optimization of expression and solubilization conditions for selected targets was also performed. Seventeen targets have been purified and subjected to crystallization so far. Eighteen percent of these targets (2/17) produced crystals under specific sets of crystallization conditions.  相似文献   

8.
Helicobacter pylori infection is one of the most common infectionsworldwide and is associated with gastric diseases. Virulence factors such as VacA andCagA have been shown to increase the risk of these diseases. Studies have suggested acausal role of CagA EPIYA-C in gastric carcinogenesis and this factor has been shownto be geographically diverse. We investigated the number of CagA EPIYA motifs and thevacA i genotypes in H. pylori strains fromasymptomatic children. We included samples from 40 infected children (18 females and22 males), extracted DNA directly from the gastric mucus/juice (obtained using thestring procedure) and analysed the DNA using polymerase chain reaction and DNAsequencing. The vacA i1 genotype was present in 30 (75%) samples,the i2 allele was present in nine (22.5%) samples and both alleles were present inone (2.5%) sample. The cagA-positive samples showed distinctpatterns in the 3’ variable region of cagA and 18 of the 30 (60%)strains contained 1 EPIYA-C motif, whereas 12 (40%) strains contained two EPIYA-Cmotifs. We confirmed that the studied population was colonised early by the mostvirulent H. pylori strains, as demonstrated by the high frequency ofthe vacA i1 allele and the high number of EPIYA-C motifs. Therefore,asymptomatic children from an urban community in Fortaleza in northeastern Brazil arefrequently colonised with the most virulent H. pyloristrains.  相似文献   

9.
Chronic infection with Helicobacter pylori cagA-positive strains is associated with atrophic gastritis, peptic ulceration, and gastric carcinoma. The cagA gene product, CagA, is delivered into gastric epithelial cells via type IV secretion, where it undergoes tyrosine phosphorylation at the EPIYA motifs. Tyrosine-phosphorylated CagA binds and aberrantly activates the oncogenic tyrosine phosphatase SHP2, which mediates induction of elongated cell morphology (hummingbird phenotype) that reflects CagA virulence. CagA also binds and inhibits the polarity-regulating kinase partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) via the CagA multimerization (CM) sequence independently of tyrosine phosphorylation. Because PAR1 exists as a homodimer, two CagA proteins appear to be passively dimerized through complex formation with a PAR1 dimer in cells. Interestingly, a CagA mutant that lacks the CM sequence displays a reduced SHP2 binding activity and exhibits an attenuated ability to induce the hummingbird phenotype, indicating that the CagA-PAR1 interaction also influences the morphological transformation. Here we investigated the role of CagA dimerization in induction of the hummingbird phenotype with the use of a chemical dimerizer, coumermycin. We found that CagA dimerization markedly stabilizes the CagA-SHP2 complex and thereby potentiates SHP2 deregulation, causing an increase in the number of hummingbird cells. Protrusions of hummingbird cells induced by chemical dimerization of CagA are further elongated by simultaneous inhibition of PAR1. This study revealed a role of the CM sequence in amplifying the magnitude of SHP2 deregulation by CagA, which, in conjunction with the CM sequence-mediated inhibition of PAR1, evokes morphological transformation that reflects in vivo CagA virulence.  相似文献   

10.
The key protein in the initiation of Helicobacter pylori chromosome replication, DnaA, has been characterized. The amount of the DnaA protein was estimated to be approximately 3000 molecules per single cell; a large part of the protein was found in the inner membrane. The H.pylori DnaA protein has been analysed using in vitro (gel retardation assay and surface plasmon resonance (SPR)) as well as in silico (comparative computer modeling) studies. DnaA binds a single DnaA box as a monomer, while binding to the fragment containing several DnaA box motifs, the oriC region, leads to the formation of high molecular mass nucleoprotein complexes. In comparison with the Escherichia coli DnaA, the H.pylori DnaA protein exhibits lower DNA-binding specificity; however, it prefers oriC over non-box DNA fragments. As determined by gel retardation techniques, the H.pylori DnaA binds with a moderate level of affinity to its origin of replication (4nM). Comparative computer modelling showed that there are nine residues within the binding domain which are possible determinants of the reduced H.pylori DnaA specificity. Of these, the most interesting is probably the triad PTL; all three residues show significant divergence from the consensus, and Thr398 is the most divergent residue of all.  相似文献   

11.
The crystal structure of a heme oxygenase (HO) HugZ from Helicobacter pylori complexed with heme has been solved and refined at 1.8 Å resolution. HugZ is part of the iron acquisition mechanism of H. pylori, a major pathogen of human gastroenteric diseases. It is required for the adaptive colonization of H. pylori in hosts. Here, we report that HugZ is distinct from all other characterized HOs. It exists as a dimer in solution and in crystals, and the dimer adopts a split-barrel fold that is often found in FMN-binding proteins but has not been observed in hemoproteins. The heme is located at the intermonomer interface and is bound by both monomers. The heme iron is coordinated by the side chain of His245 and an azide molecule when it is present in crystallization conditions. Experiments show that Arg166, which is involved in azide binding, is essential for HugZ enzymatic activity, whereas His245, surprisingly, is not, implying that HugZ has an enzymatic mechanism distinct from other HOs. The placement of the azide corroborates the observed γ-meso specificity for the heme degradation reaction, in contrast to most known HOs that have α-meso specificity. We demonstrate through sequence and structural comparisons that HugZ belongs to a new heme-binding protein family with a split-barrel fold. Members of this family are widespread in pathogenic bacteria and may play important roles in the iron acquisition of these bacteria.  相似文献   

12.
ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the functionally analogous human enzyme, thus providing means for selective inhibition of bacterial growth. To identify novel compounds with anti-bacterial activity against the human pathogenic bacterium Helicobacter pylori, based on our earlier biochemical and structural analyses, we designed a series of eighteen 2-hydroxy-1,4-naphthoquinones (2-OH-1,4-NQs) that target HpThyX. Our lead-like molecules markedly inhibited the NADPH oxidation and 2′-deoxythymidine-5′-monophosphate-forming activities of HpThyX enzyme in vitro, with inhibitory constants in the low nanomolar range. The identification of non-cytotoxic and non-mitotoxic 2-OH-1,4-NQ inhibitors permitted testing their in vivo efficacy in a mouse model for H. pylori infections. Despite the widely assumed toxicity of naphthoquinones (NQs), we identified tight-binding ThyX inhibitors that were tolerated in mice and can be associated with a modest effect in reducing the number of colonizing bacteria. Our results thus provide proof-of-concept that targeting ThyX enzymes is a highly feasible strategy for the development of therapies against H. pylori and a high number of other ThyX-dependent pathogenic bacteria. We also demonstrate that chemical reactivity of NQs does not prevent their exploitation as anti-microbial compounds, particularly when mitotoxicity screening is used to prioritize these compounds for further experimentation.  相似文献   

13.
Gamma-glutamyltranspeptidase (GGT) is a novel protein involved in the induction of Helicobacter pylori-mediated apoptosis; however, the signal pathway involved in GGT-induced apoptosis remains unclear. Using DNA recombination techniques, ggt was cloned into pET117b and transformed into Escherichia coli. Recombinant GGT was purified using nickel-affinity resin and was digested by thrombin. Recombinant GGT induced apoptosis in AGS cells in a time-dependent manner, which was confirmed by TUNEL staining, the MTT assay and immunoblot analysis for caspases-9, -3, Bax, Bcl-2, Bcl-xL and cytochrome c release. Activation of caspase-3 and -9 following exposure to GGT increased in a time-dependent manner and upregulation of proapoptotic Bax and a downregulation of antiapoptotic Bcl-2 and Bcl-xL was detected. Apoptotic signals also trigger changes in mitochondria, which lead to a release of cytochrome c into the cytosolic space. The GGT-deficient mutant was not as able to induce apoptosis as the wild-type strain. These results indicate that GGT of H. pylori induces apoptosis via a mitochondria-mediated pathway.  相似文献   

14.
Structure of the neutrophil-activating protein from Helicobacter pylori   总被引:7,自引:0,他引:7  
Helicobacter pylori is a major human pathogen associated with severe gastroduodenal diseases, including ulcers and cancers. An H.pylori protein that is highly immunogenic in humans and mice has been identified recently. This protein has been termed HP-NAP, due to its ability of activating neutrophils. In order to achieve a molecular understanding of its unique immunogenic and pro-inflammatory properties, we have determined its three-dimensional structure. Its quaternary structure is similar to that of the dodecameric bacterial ferritins (Dps-like family), but it has a different surface potential charge distribution. This is due to the presence of a large number of positively charged residues, which could well account for its unique ability in activating human leukocytes.  相似文献   

15.
The maturation of [NiFe]-hydrogenase is highly dependent on a battery of chaperone proteins. Among these, HypA and HypB were proposed to exert nickel delivery functions in the metallocenter assembly process, although the detailed mechanism remains unclear. Herein, we have overexpressed and purified wild-type HypB as well as two mutants, K168A and M186L/F190V, from Helicobacter pylori. We demonstrated that all proteins bind Ni(2+) at a stoichiometry of one Ni(2+) per monomer of the proteins with dissociation constants at micromolar levels. Ni(2+) elevated GTPase activity of WT HypB, which is attributable to a lower affinity of the protein toward GDP as well as Ni(2+)-induced dimerization. The disruption of GTP-dependent dimerization has led to GTPase activities of both mutants in apo-forms almost completely abolished, compared with the wild-type protein. The GTPase activity is partially restored for HypB(M186L/F190V) mutant but not for HypB(K168A) mutant upon Ni(2+) binding. HypB forms a complex with its partner protein HypA with a low affinity (K(d) of 52.2 ± 8.8 μM). Such interactions were also observed in vivo both in the absence and presence of nickel using a GFP-fragment reassembly technique. The putative protein-protein interfaces on H. pylori HypA and HypB proteins were identified by NMR chemical shift perturbation and mutagenesis studies, respectively. Intriguingly, the unique N terminus of H. pylori HypB was identified to participate in the interaction with H. pylori HypA. These structural and functional studies provide insight into the molecular mechanism of Ni(2+) delivery during maturation of [NiFe]-hydrogenase.  相似文献   

16.
Moran AP 《Carbohydrate research》2008,343(12):1952-1965
Helicobacter pylori is a prevalent bacterial, gastroduodenal pathogen of humans that can express Lewis (Le) and related antigens in the O-chains of its surface lipopolysaccharide. The O-chains of H. pylori are commonly composed of internal Le(x) units with terminal Le(x) or Le(y) units or, in some strains, with additional units of Le(a), Le(b), Le(c), sialyl-Le(x) and H-1 antigens, as well as blood groups A and B, thereby producing a mosaicism of antigenic units expressed. The genetic determination of the Le antigen biosynthetic pathways in H. pylori has been studied, and despite striking functional similarity, low sequence homology occurs between the bacterial and mammalian alpha(1,3/4)- and alpha(1,2)-fucosyltransferases. Factors affecting Le antigen expression in H. pylori, that can influence the biological impact of this molecular mimicry, include regulation of fucosyltransferase genes through slipped-strand mispairing, the activity and expression levels of the functional enzymes, the preferences of the expressed enzyme for distinctive acceptor molecules and the availability of activated sugar intermediates. Le mimicry was initially implicated in immune evasion and gastric adaptation by the bacterium, but more recent studies show a role in gastric colonization and bacterial adhesion with galectin-3 identified as the gastric receptor for polymeric Le(x) on the bacterium. From the host defence aspect, innate immune recognition of H. pylori by surfactant protein D is influenced by the extent of LPS fucosylation. Furthermore, Le antigen expression affects both the inflammatory response and T-cell polarization that develops after infection. Although controversial, evidence suggests that long-term H. pylori infection can induce autoreactive anti-Le antibodies cross-reacting with the gastric mucosa, in part leading to the development of gastric atrophy. Thus, Le antigen expression and fucosylation in H. pylori have multiple biological effects on pathogenesis and disease outcome.  相似文献   

17.
Helicobacter pylori evade immune responses and achieve persistent colonization in the stomach. However, the mechanism by which H. pylori infections persist is not clear. In this study, we showed that MIR30B is upregulated during H. pylori infection of an AGS cell line and human gastric tissues. Upregulation of MIR30B benefited bacterial replication by compromising the process of autophagy during the H. pylori infection. As a potential mechanistic explanation for this observation, we demonstrate that MIR30B directly targets ATG12 and BECN1, which are important proteins involved in autophagy. These results suggest that compromise of autophagy by MIR30B allows intracellular H. pylori to evade autophagic clearance, thereby contributing to the persistence of H. pylori infections.  相似文献   

18.
Helicobacter pylori (H. pylori) infection is associated with chronic gastritis, peptic ulcer and gastric cancer. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Here we show that human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death receptor signaling. Human gastric epithelial cells are intrinsically resistant to TRAIL-mediated apoptosis. The induction of TRAIL sensitivity by H. pylori is dependent on the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex (DISC) through downregulation of cellular FLICE-inhibitory protein (FLIP). Overexpression of FLIP abolished the H. pylori-induced TRAIL sensitivity in human gastric epithelial cells. Our study thus demonstrates that H. pylori induces sensitivity to TRAIL apoptosis by regulation of FLIP and assembly of DISC, which initiates caspase activation, resulting in the breakdown of resistance to apoptosis, and provides insight into the pathogenesis of gastric damage in Helicobacter infection. Modulation of host apoptosis signaling by bacterial interaction adds a new dimension to the pathogenesis of Helicobacter.  相似文献   

19.
Helicobacter pylori CagA oncoprotein is critically involved in gastric carcinogenesis. Upon delivery into gastric epithelial cells via type IV secretion, CagA induces an extremely elongated cell-shape known as the hummingbird phenotype, which is associated with massive changes in actin cytoskeleton and elevated motility. With the notion that the hummingbird phenotype reflects pathogenic/oncogenic activity of CagA, many studies have focused on the mechanism through which CagA induces the morphological change. Once delivered, CagA interacts with host proteins such as oncogenic phosphatase SHP2 and polarity-regulating kinase PAR1b. Whereas the essential role of the CagA-SHP2 interaction in inducing the hummingbird phenotype has been extensively investigated, involvement of the CagA-PAR1b interaction in the morphological change has remained uncertain. Recently, we found that the CagA-PAR1b interaction, which inhibits PAR1b kinase activity, influences the actin cytoskeletal system and potentiates the magnitude of the hummingbird phenotype. We also found that PAR1b inactivates a RhoA-specific GEF, GEF-H1, via phosphorylation and thereby inhibits cortical actin and stress fiber formation. Collectively, these findings indicate that CagA-mediated inhibition of PAR1b promotes RhoA-dependent actin-cytoskeletal rearrangement and thereby strengthens the hummingbird phenotype induced by CagA-stimulated SHP2 during infection with H. pylori cagA-positive strains.  相似文献   

20.
The Helicobacter pylori genome includes a family of outer membrane proteins (OMPs) with substantial N and C-terminal identity. To better understand their evolution, the nucleotide sequences for two members, babA and babB, were determined from a worldwide group of 23 strains. The geographic origin of each strain was found to be the major determinant of phylogenetic structure, with strains of Eastern and Western origin showing greatest divergence. For strains 96-10 (Japan) and 96-74 (USA), the 5' regions of babB are replaced with babA sequences, demonstrating that recombination occurs between the two loci. babA and babB have nearly equivalent variation in nucleotide and amino acid identity, and frequencies of synonymous and non-synonymous substitutions. Both genes have segmental conservation but within the 3' segment, substitution patterns are nearly identical. Although babA and babB 5' and midregion segment phylogenies show strong interstrain similarity, the 3' segments show strong intrastrain similarity, indicative of concerted evolution. Within these 3' segments, the lower intrastrain than interstrain frequencies of nucleotide substitutions, which are below mean background H. pylori substitution frequencies, indicate selection against intrastrain diversification. Since babA/babB gene conversions likely underlie the concerted evolution of the 3' segments, in an experimental system, we demonstrate that gene conversions can frequently (10(-3)) occur in H. pylori. That these events are recA-dependent and DNase-resistant indicates their likely cause is intragenomic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号