首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用原子力显微镜和衍射显微术,在纳米精确尺度探测副伤寒沙门氏菌B(Sp B)感染宿主红细胞(RBC)膜微观结构和力学特性,涉及细胞的形变、膜面内剪切模量和弯曲模量。结合这两种单分子测量技术,利用相关的数学模型表述RBC膜对菌体印B的入侵非常敏感。实验结果显示,不同感染期间的SpB寄生菌体,能够引起宿主RBC膜结构改变,形变能力降低,膜剪切模量和弯曲模量显著增加。这些力学特性的变化影响RBC的输氧和循环功能。实验结果表明,印B具有独特的鞭毛调控系统,入侵的毒性菌体寄生蛋白与血影蛋白网络中的运输蛋白有特异结合位点,导致RBC膜骨架网络、波动力学和细胞内、外基质都产生应激反应,这有可能为理解勋曰感染RBC的发病机理和寄生途径提供一些新的实验思路和分析依据。  相似文献   

2.
采用原子力显微镜和衍射显微术,在纳米精确尺度探测副伤寒沙门氏菌B(Sp B)感染宿主红细胞(RBC)膜微观结构和力学特性,涉及细胞的形变、膜面内剪切模量和弯曲模量.结合这两种单分子测量技术,利用相关的数学模型表述RBC膜对菌体Sp B的入侵非常敏感.实验结果显示,不同感染期间的Sp B寄生菌体,能够引起宿主RBC膜结构改变,形变能力降低,膜剪切模量和弯曲模量显著增加.这些力学特性的变化影响RBC的输氧和循环功能.实验结果表明,Sp B具有独特的鞭毛调控系统,入侵的毒性菌体寄生蛋白与血影蛋白网络中的运输蛋白有特异结合位点,导致RBC膜骨架网络、波动力学和细胞内、外基质都产生应激反应,这有可能为理解Sp B感染RBC的发病机理和寄生途径提供一些新的实验思路和分析依据.  相似文献   

3.
介绍了一种新型的微机化动态流光度法细胞力学参数分析仪,它能自动测量静态红细胞参数(RF)、膜硬度、(S)半松弛时间、(t50%)和细胞粘度(VP)等微力学参数,来描述细胞力学特性.对仪器的灵敏度、精确度和重复性,对Triton、水杨酸钠.ROK、TRE、DUS、EGb761等药物对于红细胞力学性质的作用分别进行了研究,证明了本仪器对药理作用研究具有重要价值,并认为该仪器在今后临床检验中有广泛的应用价值.  相似文献   

4.
心肌细胞是心脏结构和功能的基本单位,约占心脏细胞总数的三分之一,是心脏发育、生理病理研究的重点对象,然而传统的在体和体外研究技术存在诸多困难,无法实现细胞微环境的有效控制和生理功能的实时动态监测,制约着心肌细胞功能研究的快速发展。近年来迅速发展的微加工技术,尤其是微流控芯片技术为心肌细胞功能研究提供了便利。微流控芯片技术具有微米尺度的细胞及其微环境的时空控制功能,有效提高了体外细胞研究的组织相关性,是心肌细胞生理功能和力学特性研究的重要工具,如实时监测单个心肌细胞的代谢活性、表征细胞的电生理特性和力学特性、研究细胞微环境和力学微环境对心肌细胞形态和功能的影响。本文从前述几个方面对微流控芯片在心肌细胞生理功能研究中的应用进行综述和对其应用前景进行了展望。  相似文献   

5.
对地贫红细胞的显微激光散射和图象分析   总被引:4,自引:0,他引:4  
应用显微准弹性激光散射(MQLS)技术与显微生物医学图象分析技术对地中海贫血红细胞及胞内血红蛋白动态特性进行了研究.在实验中,比较了正常人及地贫患者红细胞胞内血红蛋白聚集体的平均流体力学半径、平均平动扩散系数及红细胞膜的搏动频率等动态特性参数,以及细胞的截面积、规化形状因子、长径、短径、灰度等图象分析数据,发现地贫红细胞的血红蛋白聚合物平均流体力学半径远远大于正常人红细胞的,其大小变异亦较正常人大,且其膜搏动频率也较为缓慢,细胞的截面积也变小.这反映了地贫红细胞内有较大的蛋白质聚合物存在和红细胞变形能力差的特性.研究还表明,显微准弹性激光散射技术结合图象分析技术,可使测量的可比性和准确性大大提高,预期可广泛适用于各种活细胞动态特性的研究.  相似文献   

6.
一、引言 从静态短时测试发展到动态长时间连续监测,是心电图技术发展的一个重大飞跃。所谓“静态”测试,就是在病人处于安静(不活动)的状态下来采集心电图,因而是短时间、短数据的。安静状态保证肌电干扰等伪信号最小。“动态连续监测”就是对正常生活活动条件下的患者长时间地监测,采集其心电图数据。这一重大的飞跃,不仅使心电图技术获得新的  相似文献   

7.
该文探讨了血液保存过程中随着保存时间的增加红细胞的细胞力学性质改变及其分子基础。应用原子力显微镜分别对不同保存时间的库存血红细胞力学性质进行检测,获得相应的力–距离曲线。对不同保存时间的红细胞硬度、变形性进行评估。对不同存储时间的红细胞脂质过氧化和膜蛋白巯基含量进行检测。对红细胞膜蛋白进行SDS-PAGE和免疫荧光染色,分析其膜骨架蛋白分布、含量和相互作用的变化,探讨力学性质变化分子机制。研究发现,血液保存过程中,保存3周后红细胞杨氏模量显著增加,细胞硬度增大,力学性质下降(1 d:0.54±0.27 k Pa;21 d:0.71±0.57 k Pa;42 d:1.33±0.70 k Pa)。此时,红细胞脂质过氧化程度增加,膜蛋白巯基含量下降,膜蛋白巯基交联聚簇化,形成高分子聚合物(high molecular weight,HMW)。研究证明,库存血存储时间过长会导致细胞力学性质下降,成为影响输血质量的重要因素。  相似文献   

8.
对多种生物薄样品和标样进行电子探针X射线能谱显微定量分析,分别以电子束轰击后样品的O Kα峰计数和介于4.2-6.2keV区间的连续X-射线计数变化监测质量损失,结果显示样品O Kα峰计数减少幅度大于连续X-射线计数减少幅度,在相同的分析条件下,各样品质量损失程度不相同(P<0.05)。培养肝癌细胞冷冻干燥超薄切片、明胶冷冻干燥超薄切片、BSA薄膜、氨基塑料超薄切片、红细胞冷冻干燥超薄切片和卵黄高磷蛋白薄膜样品的质量损失分别为33%、28%、26%、18%、13%和13%,以上结果提示:以O Kα峰计数的减少监测样品的质量损失较敏感,在进行生物薄试样定量EPMA时应对各样品的质量损失进行相应校正。  相似文献   

9.
采用显微动态图像分析技术无扰、实时、在位地研究了低于0.005%浓度的戊二醛对年轻、老龄红细胞膜变形能力的作用.实验结果表明随着戊二醛浓度的增加,年轻、老龄红细胞膜的弯曲弹性模量明显变大,而老龄红细胞增加幅度更大;且随着戊二醛固定时间的延长,年轻、老龄红细胞膜变形能力的差距越来越大.说明作为免疫分析中常用固定剂的戊二醛对年轻、老龄红细胞细胞骨架的影响差异较大。研究结果可为适当选取在免疫分析测定中,以及以年轻红细胞作为药物载体时需采用的戊二醛浓度提供依据。  相似文献   

10.
活体动物光学成像技术因具有无创伤、活体、动态、连续、特异显像等优点,已被广泛应用于细胞的体内示踪或特定基因体内表达的实时监测研究。TGF-β1信号通路在乳腺癌的发生、发展和转移过程中起着十分重要的作用。本文主要对活体动物光学成像技术在研究TGF-β1信号通路调控乳腺癌转移作用中的应用进行综述,讨论乳腺癌的体内转移过程与TGF-β1信号通路的相关性,最后对黄酮类化合物干预乳腺癌转移的作用进行总结。因此,本文可为筛选抗乳腺癌转移的新型药物提供一定的理论指导,推动分子影像技术在活体动态连续观测药物治疗效果方面的应用。  相似文献   

11.
The determination of the bone strengths of wild animals has many potential advantages, which include the ability to estimate age of animals; monitor strengths of bones as influenced by contaminants, particularly lead; provide appropriate data for design of capture, handling, and holding equipment to minimize the possibility for bone fracture in captured animals; and measure effects of nutrition on bone strength. The objectives of of this study were to provide data on the mechanical properties of limb bones of river otters and to consider effects of age and sex on the properties. Three-point bending and shear tests were conducted on the radius, ulna, tibia, and fibula. The three-point bending tests were first conducted on the bones loaded within their elastic limit. These tests were used to evaluate the modulii of elasticity of the bones. The data on the modulii indicated that age and sex did not have significant effects on the values. The four different bones tested had approximately the same modulus of elasticity, with an average value of 14. 1 gigapascal (GPa). The shear tests were conducted on the limb bones to failure in order to determine the maximum breaking force and strength of the bones. The shear force of the radius tended to increase with age and there was a significant (P < .001) age effect. The shear force of the ulna for males was significantly (P < .002) higher than that of the females. A similar trend was observed for the fibula (P < .03). The shear strength of the radius increased with age and there was a significant (P < .005) age effect. There was also a significant (P < .001) effect of sex on shear strength of the radius; values for females were higher. There were no significant effects of sex or age found on shear strengths of the ulnae, tibia, and fibulae.  相似文献   

12.
The purpose of this study was to develop a new dynamic image analyzing technique that will give us the ability to measure the viscoelastic parameters of individual living red blood cells non-invasively, in situ and in real time. With this technique, the bending modulus Kc, the shear elasticity μ and their ratio ε were measured under different temperatures, oxygen partial pressures and osmotic pressures. The results not only show the effects of external conditions on mechanical properties of cell membranes including deformability,flexibility, adhesive ability and plasticity, but also demonstrate that the technique can be used to measure cell membrane parameters continuously under several physiological and pathological conditions.  相似文献   

13.
Fluorescent probes are used in membrane biophysics studies to provide information about physical properties such as lipid packing, polarity and lipid diffusion or to visualize membrane domains. However, our understanding of the effects the dyes themselves may induce on the membrane structure and properties are sparse. As mechanical properties like bending elasticity were already shown to be highly sensitive to the addition of “impurities” into the membranes, we have investigated the impact of six different commonly used fluorescent membrane probes (LAURDAN, TR-DPPE, Rh-DPPE, DiIC18, Bodipy-PC and NBD-PC) on the bending elasticity of dye containing POPC GUVs as compared to single component POPC GUVs. Small changes in the membrane bending elasticity compared to single POPC bilayers are observed when 2 mol% of Rh-DPPE, Bodipy-PC or NBD-PC are added in POPC membranes. These binary membranes are showing non reproducible mechanical properties attributed to a photo-induced peroxidation processes that may be controlled by a reduction of the fluorescent dye concentration. For TR-DPPE, a measurable decrease of the bending elasticity is detected with reproducible bending elasticity measurements. This is a direct indication that this dye, when exposed to illumination by a microscope lamp and contrary to Rh-DPPE, does not induce chemical degradation. At last, LAURDAN and DiIC18 probes mixed with POPC do not significantly affect the bending elasticity of pure POPC bilayers, even at 2 mol%, suggesting these latter probes do not induce major perturbations on the structure of POPC bilayers.  相似文献   

14.
Uniaxial tensile tests of solid and hollow cylindrical plugs of pith parenchyma from potato tubers indicate the tensile modulus of elasticity, E, can vary significantly as a function of tissue transverse area and water potential. E increases from 1.2 to 19 MPa as ψw changes from -1.4 to -0.4 MPa. E increases from 5 to 19 MPa as transverse area of solid tissue sample increases from 0.2 to 2.5 cm2. Variations in E accompanying changes in transverse area appear to be related to cell number along the radii of plugs. Hollow cylindrical plugs for which wall thickness is maintained but total tissue area is changed show constant values of E. It is suggested that shear stresses within tissue samples influence E and are dependent upon cell number and tissue water content. Material with these properties would be a “poor choice” for constructing plant organs experiencing repeated stress and periodic dehydration. However, ground tissue may act as a buffer against localized ovaling of stem and leaf cross sections under loading.  相似文献   

15.
Highly curved cell membrane structures, such as plasmalemmal vesicles (caveolae) and clathrin-coated pits, facilitate many cell functions, including the clustering of membrane receptors and transport of specific extracellular macromolecules by endothelial cells. These structures are subject to large mechanical deformations when the plasma membrane is stretched and subject to a change of its curvature. To enhance our understanding of plasmalemmal vesicles we need to improve the understanding of the mechanics in regions of high membrane curvatures. We examine here, theoretically, the shapes of plasmalemmal vesicles assuming that they consist of three membrane domains: an inner domain with high curvature, an outer domain with moderate curvature, and an outermost flat domain, all in the unstressed state. We assume the membrane properties are the same in these domains with membrane bending elasticity as well as in-plane shear elasticity. Special emphasis is placed on the effects of membrane curvature and in-plane shear elasticity on the mechanics of vesicle during unfolding by application of membrane tension. The vesicle shapes were computed by minimization of bending and in-plane shear strain energy. Mechanically stable vesicles were identified with characteristic membrane necks. Upon stretch of the membrane, the vesicle necks disappeared relatively abruptly leading to membrane shapes that consist of curved indentations. While the resting shape of vesicles is predominantly affected by the membrane spontaneous curvatures, the membrane shear elasticity (for a range of values recorded in the red cell membrane) makes a significant contribution as the vesicle is subject to stretch and unfolding. The membrane tension required to unfold the vesicle is sensitive with respect to its shape, especially as the vesicle becomes fully unfolded and approaches a relative flat shape.  相似文献   

16.
The motion of the tectorial membrane (TM) with respect to the reticular lamina subserves auditory function by bending the outer hair cell bundles and inducing fluid flows that shear the inner hair bundles in response to sound energy. Little is currently known about its intrinsic elasticity or about the relation between the mechanical properties and function of the membrane. Here we subdivide the TM into three longitudinal regions and five radial zones and map the shear modulus of the TM using atomic force microscopy, and present evidence that the TM elasticity varies radially, after the distribution of type A collagen fibrils. This is seen most dramatically as a decrease in shear modulus in the neighborhood of the sensory hair cells; we argue that this inhomogeneity of properties not only protects the hair bundles but also increases the energy efficiency of the vibrational shearing during sound transduction.  相似文献   

17.
Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI) in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years) were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87–0.97) and inter-observer (ICC = 0.78–0.83) reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders.  相似文献   

18.
Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.  相似文献   

19.
This study aimed to clarify the effective stretching positions for neck extensor muscles. Fifteen healthy men were measured shear moduli of the right neck extensor muscles using ultrasound shear wave elastography in following positions: rest (Rest), flexion (Flex), contralateral bending (Bend), flexion + contralateral bending (Flex → Bend), flexion + contralateral bending + contralateral rotation (Flex → Bend → ConRot), and flexion + contralateral bending + ipsilateral rotation (Flex → Bend → IpsRot). The increase in the shear modulus indicated a greater muscle elongation. Regarding the upper trapezius and splenius capitis, the shear moduli at Flex → Bend, Flex → Bend → ConRot, and Flex → Bend → IpsRot were significantly higher than those at Rest. The shear moduli at stretching positions, including contralateral bending, were significantly higher than those at Rest and Flex in the levator scapulae. The results indicated that the stretching position with a combination of flexion and contralateral bending could be effective for elongation of the upper trapezius and splenius capitis. Furthermore, the stretching positions including contralateral bending could be effective for the levator scapulae.  相似文献   

20.
The rheological behaviours of the steady sheared short-chain polypropylene (PP) fluid are studied using isobaric isothermal nonequilibrium molecular dynamics simulations. By comparing the behaviours of PP fluid with that of the linear alkane fluid of n-hexadecane (C16) having equal backbone length, we investigated the effects of the branch structure on shear thinning, rotational relaxation time, critical shear rate and potential energies. The results showed that the degree of shear thinning of the PP fluid is lower than that of the C16 fluid. With respect to different temperatures, the degree of shear thinning of the former is less sensitive than that of the latter. At the molecular level, potential energies including van der Waals nonbonding interaction and bond stretching, bond bending, and bond torsion interactions are discussed. Significantly, the varying tendency of the bending potential of the PP fluid at very high shear rates is contrary to that of the C16 fluid. We propose, therefore, that the branch structure affects the bending angle distribution such that it causes differences in the rheological behaviours of these two fluids. Furthermore, in all the molecular potentials of the PP fluid, the torsion potential of the dihedral angle is observed to be the strongest dependent upon temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号