首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.  相似文献   

2.
Lung cancer is a major cause of cancer-related mortality in the United States and around the world. Due to the pre-existing or acquired chemo-resistance, the current standard chemotherapy regimens only show moderate activity against lung cancer. In the current study, we explored the potential anti-lung cancer activity of cinobufotalin in vivo and in vitro, and studied the underlying mechanisms. We demonstrated that cinobufotalin displayed considerable cytotoxicity against lung cancer cells (A549, H460 and HTB-58 lines) without inducing significant cell apoptosis. Our data suggest that mitochondrial protein cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates cinobufotalin-induced non-apoptotic death of lung cancer cells. The Cyp-D inhibitor cyclosporine A (CsA), the mPTP blocker sanglifehrin A (SfA), and Cyp-D shRNA-silencing significantly inhibited cinobufotalin-induced mitochondrial membrane potential (MMP) reduction and A549 cell death (but not apoptosis). Using a mice xenograft model, we found that cinobufotalin inhibited A549 lung cancer cell growth in vivo. Thus, cinobufotalin mainly induces Cyp-D-dependent non-apoptotic death in cultured lung cancer cells. The results of this study suggest that cinobufotalin might be further investigated as a novel anti-lung cancer agent.  相似文献   

3.
The ability of certain cancer cells to maintain a highly reduced intracellular environment is correlated with aggressiveness and drug resistance. Since the glutathione (GSH) and thioredoxin (TRX) systems cooperate to a tight regulation of ROS in cell physiology, and to a stimulation of tumour initiation and progression, modulation of the GSH and TRX pathways are emerging as new potential targets in cancer. In vivo methods to assess changes in tumour redox status are critically needed to assess the relevance of redox-targeted agents. The current study assesses in vitro and in vivo biomarkers of tumour redox status in response to treatments targeting the GSH and TRX pathways, by comparing cytosolic and mitochondrial redox nitroxide electron paramagnetic resonance (EPR) probes, and cross-validation with redox dynamic fluorescent measurement. For that purpose, the effect of the GSH modulator buthionine sulfoximine (BSO) and of the TRX reductase inhibitor auranofin were measured in vitro using both cytosolic and mitochondrial EPR and roGFP probes in breast and cervical cancer cells. In vivo, mice bearing breast or cervical cancer xenografts were treated with the GSH or TRX modulators and monitored using the mito-TEMPO spin probe. Our data highlight the importance of using mitochondria-targeted spin probes to assess changes in tumour redox status induced by redox modulators. Further in vivo validation of the mito-tempo spin probe with alternative in vivo methods should be considered, yet the spin probe used in vivo in xenografts demonstrated sensitivity to the redox status modulators.  相似文献   

4.

Background

Kidney is known as the most sensitive target organ for depleted uranium (DU) toxicity in comparison to other organs. Although the oxidative stress and mitochondrial damage induced by DU has been well investigated, the precise mechanism of DU-induced nephrotoxicity has not been thoroughly recognized yet.

Methods

Kidney mitochondria were obtained using differential centrifugation from Wistar rats and mitochondrial toxicity endpoints were then determined in both in vivo and in vitro uranyl acetate (UA) exposure cases.

Results

Single injection of UA (0, 0.5, 1 and 2 mg/kg, i.p.) caused a significant increase in blood urea nitrogen and creatinine levels. Isolated mitochondria from the UA-treated rat kidney showed a marked elevation in oxidative stress accompanied by mitochondrial membrane potential (MMP) collapse as compared to control group. Incubation of isolated kidney mitochondria with UA (50, 100 and 200 μM) manifested that UA can disrupt the electron transfer chain at complex II and III that leads to induction of reactive oxygen species (ROS) formation, lipid peroxidation, and glutathione oxidation. Disturbances in oxidative phosphorylation were also demonstrated through decreased ATP concentration and ATP/ADP ratio in UA-treated mitochondria. In addition, UA induced a significant damage in mitochondrial outer membrane. Moreover, MMP collapse, mitochondrial swelling and cytochrome c release were observed following the UA treatment in isolated mitochondria.

General significance

Both our in vivo and in vitro results showed that UA-induced nephrotoxicity is linked to the impairment of electron transfer chain especially at complex II and III which leads to subsequent oxidative stress.  相似文献   

5.
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca2+-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys56 relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca2+-induced ANT conformational change and mitochondrial swelling. ANT-Pro61 isomerization increased ANT-Cys56 relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca2+ induced ANT “c” conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca2+-induced ANT “c” conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca2+ induces the ANT “c” conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.  相似文献   

6.
Raising intracellular calcium levels can induce apoptosis or programmed cell death in many cells. While early rises in intracellular calcium are not universally associated with apoptotic cell death, calcium clearly plays a key role in many of the biochemical events which occur during apoptosis. In this paper we have determined intracellular calcium rises induced by 2, 10, and 100 nMthapsigargin in mouse thymocytes. These concentrations cause increases in cytosolic calcium of 100–250, 400–600, and >1000 nM,respectively. These rises are sustained for at least 85 min and the ratio between the maximum rise caused by 10 nMcompared to 2 nMthapsigargin is 2.1 ± 0.4 (n= 6). Both 2 and 10 nMthapsigargin cause apoptosis at 24 h as shown by DNA fragmentation and morphology when examined by electron microscopy. Cyclosporin A (CsA) inhibits apoptosis caused by 2 nMthapsigargin but not that caused by 10 nMthapsigargin. Electron microscopy of thymocytes treated with 2 nMthapsigargin at 24 h shows intact mitochondria although with altered morphology. There is no loss of ATP or decrease in the ATP/ADP ratio in these cells over 12 h. Mitochondria in cells treated with 10 nMthapsigargin, however, are swollen by 6 h and many are lost by 24 h. These cells show greatly diminished ATP content by 12 h and a decrease in ATP/ADP ratio. Examination of the effects of PMA, an activator of the plasma membrane calcium ATPase pump, on cells treated with 10 nMthapsigargin suggests that two pools of calcium may be responsible for the differential effects of the two calcium levels in the cells. Probing of the mitochondrial membrane potential (MMP) by rhodamine 123 staining of live cells shows that the collapse of the MMP caused by 10 nMthapsigargin is unaffected by CsA. The MMP is also reduced in cells treated with 2 nMthapsigargin but this is restored by CsA. Cells are also rescued from apoptosis caused by 2 nMthapsigargin by incubation with FK506. This immunosuppressive agent has no effect on the membrane permeability transition induced in isolated mitochondria. These results suggest that very low rises in intracellular calcium in thymocytes cause activation-induced cell death inhibited by CsA and FK506 and are without effect on ATP levels and therefore do not involve irreversible mitochondrial damage. Exceeding these calcium levels by only twofold results in apoptosis accompanied by reduced ATP levels and mitochondrial damage, although apoptotic cell death in this instance is unaffected by the classic inhibitor of mitochondrial permeability transition, CsA.  相似文献   

7.
Antimycin A (AMA) inhibits succinate oxidase, NADH oxidase, and mitochondrial electron transport chain between cytochrome b and c. We recently demonstrated that AMA inhibited the growth of Calu-6 lung cancer cells through apoptosis. Here, we investigated the effects of AMA and/or MAPK inhibitors on Calu-6 lung cancer cells in relation to cell growth, cell death, reactive oxygen species (ROS), and GSH levels. Treatment with AMA inhibited the growth of Calu-6 cells at 72 h. AMA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). While ROS were decreased in AMA-treated Calu-6 cells, O 2 ?? among ROS was increased. AMA also induced GSH depletion in Calu-6 cells. Treatment with MEK inhibitor intensified cell death, MMP (ΔΨm) loss, and GSH depletion in AMA-treated Calu-6 cells. JNK inhibitor also increased cell death, MMP (ΔΨm) loss, and ROS levels in these cells. Treatment with p38 inhibitor magnified cell growth inhibition by AMA and increased cell death, MMP (ΔΨm) loss, ROS level, and GSH depletion in AMA-treated cells. Conclusively, all the MAPK inhibitors slightly intensified cell death in AMA-treated Calu-6 cells. The changes of ROS and GSH by AMA and/or MAPK inhibitors were in part involved in cell growth and death in Calu-6 cells.  相似文献   

8.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The aim of the present study was to assess the influence of the mitochondrial membrane permeability transition inhibition against the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in relation to the mitochondria-mediated cell death process and role of oxidative stress. Both MPP+ and 6-OHDA induced the nuclear damage, the changes in the mitochondrial membrane permeability, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in differentiated PC12 cells. Cyclosporin A (CsA), trifluoperazine and aristolochic acid, inhibitors of mitochondrial permeability transition, significantly attenuated the MPP+-induced mitochondrial damage leading to caspase-3 activation, increased oxidative stress and cell death. In contrast to MPP+, the cytotoxicity of 6-OHDA was not reduced by the addition of the mitochondrial permeability transition inhibitors. The results show that the cytotoxicity of MPP+ may be mediated by the mitochondrial permeability transition formation, which is associated with formation of reactive oxygen species and the depletion of GSH. In contrast, the 6-OHDA-induced cell injury appears to be mediated by increased oxidative stress without intervention of the mitochondrial membrane permeability transition.  相似文献   

9.
Mitochondrial membrane permeabilization by HIV-1 Vpr   总被引:1,自引:0,他引:1  
The mitochondrion is a privileged target for apoptosis-modulatory proteins of viral origin. Thus, viral protein R (Vpr) can target mitochondria and induce apoptosis via a specific interaction with the permeability transition pore complex (PTPC). Vpr cooperates with the adenine nucleotide translocator (ANT) to form large conductance channels and to trigger all the hallmarks of mitochondrial membrane permeabilization (MMP). The Vpr/ANT interaction is direct, since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT, ADP, ATP, or by Bcl-2. Accordingly, Vpr modulates MMP through direct structural and functional interactions with PTPC proteins.  相似文献   

10.
Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca2+ and mitochondrial dysfunction due to matrix Ca2+ overload. In order to investigate the mechanism of Ca2+‐induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (?Ψm) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca2+ was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca2+ this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ?Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca2+ dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA‐insensitive MPT in T. cruzi mitochondria.  相似文献   

11.
The adenine nucleotide translocator in apoptosis   总被引:8,自引:0,他引:8  
Belzacq AS  Vieira HL  Kroemer G  Brenner C 《Biochimie》2002,84(2-3):167-176
Alteration of mitochondrial membrane permeability is a central mechanism leading invariably to cell death, which results, at least in part, from the opening of the permeability transition pore complex (PTPC). Indeed, extended PTPC opening is sufficient to trigger an increase in mitochondrial membrane permeability and apoptosis. Among the various PTPC components, the adenine nucleotide translocator (ANT) appears to act as a bi-functional protein which, on the one hand, contributes to a crucial step of aerobic energy metabolism, the ADP/ATP translocation, and on the other hand, can be converted into a pro-apoptotic pore under the control of onco- and anti-oncoproteins from the Bax/Bcl-2 family. In this review, we will discuss recent advances in the cooperation between ANT and Bax/Bcl-2 family members, the multiplicity of agents affecting ANT pore function and the putative role of ANT isoforms in apoptosis control.  相似文献   

12.
The effect of cerium on mitochondria isolated from hybrid rice Shanyou 63 (Oryza sativa L) was investigated. Through in vivo culture, low dose Ce3+ promoted, but higher dose Ce3+, restrained mitochondrial heat production. However, through vitro incubation, Ce3+ showed only inhibitory action on mitochondrial energy turnover, the concentration required for 50% inhibition being 46.7 μM. In addition, Ce3+, like Ca2+, induced rice mitochondrial swelling and decreased membrane potential (△ψ), which was inhibited by the specific permeability transition inhibitor cyclosporine A (CsA). The induction approached a constant level while mitochondrial metabolism was fully prevented by Ce3+. These results demonstrated that cerium influenced rice mitochondria in vivo and in vitro via different action pathways, and the latter involved the opening of rice mitochondrial permeability.  相似文献   

13.
The impact of the mitochondrial permeability transition (MPT) on cellular physiology is well characterized. In contrast, the composition and mode of action of the permeability transition pore complex (PTPC), the supramolecular entity that initiates MPT, remain to be elucidated. Specifically, the precise contribution of the mitochondrial F1FO ATP synthase (or subunits thereof) to MPT is a matter of debate. We demonstrate that F1FO ATP synthase dimers dissociate as the PTPC opens upon MPT induction. Stabilizing F1FO ATP synthase dimers by genetic approaches inhibits PTPC opening and MPT. Specific mutations in the F1FO ATP synthase c subunit that alter C‐ring conformation sensitize cells to MPT induction, which can be reverted by stabilizing F1FO ATP synthase dimers. Destabilizing F1FO ATP synthase dimers fails to trigger PTPC opening in the presence of mutants of the c subunit that inhibit MPT. The current study does not provide direct evidence that the C‐ring is the long‐sought pore‐forming subunit of the PTPC, but reveals that PTPC opening requires the dissociation of F1FO ATP synthase dimers and involves the C‐ring.  相似文献   

14.
Experiments in vitro have shown that γ-EC synthesis, the first step in GSH formation, is subject to feedback inhibition by physiological GSH concentrations. In order to evaluate the role of this feedback inhibition on γ-EC synthetase in vivo GSH synthesis was modulated in suspension cultures of P. crispum and N. tabacum by administration of cadmium. The alterations in the thiol contents were measured and in addition the effect of Cd exposure on γ-EC synthetase (E.C. 6.3.2.2) and GSH synthetase (E.C. 6.3.2.3) was studied. Decreasing cellular GSH concentrations by cadmium induced PC synthesis caused 7–10 fold increase in the rate of glutathione synthesis as measured by the accumulation of (γ-EC)nG. This increase was not linked to an increase in extractable activities of γ-EC- or GSH synthetase in parsley. In tobacco the activities of γ-EC- and GSH synthetase increased by a factor of 1.6 and 1.8, respectively, after 3 d of Cd exposure. In both species the exposure to Cd resulted in an increased cellular γ-EC content that reached a plateau within 24 h, and in a doubling of the cysteine content. In vitro experiments showed that GSH synthetase activity is inhibited by cadmium concentrations that have no effect on γ-EC synthetase activity. This may explain the accumulation of γ-EC in Cd exposed cells. Incubation with 0.25 mM cysteine did not effect the γ-EC- and GSH content in tobacco cells. In parsley the cellular GSH content increased threefold and the y-EC content twofold and stayed constant thereafter at the elevated levels. Taken together the results show that GSH synthesis in vivo is controlled by feedback inhibition as well as by the supply with cysteine. In the latter case the feedback inhibition may act as a kind of safety valve and prevent the accumulation of unphysiological GSH concentrations if the supply of cysteine is too large.  相似文献   

15.
Oxidative damage has been implicated in disorders associated with abnormal copper metabolism and also Cu2+ overloading states. Besides, mitochondria are one of the most important targets for Cu2+, an essential redox transition metal, induced hepatotoxicity. In this study, we aimed to investigate the mitochondrial toxicity mechanisms on isolated rat liver mitochondria. Rat liver mitochondria in both in vivo and in vitro experiments were obtained by differential ultracentrifugation and the isolated liver mitochondria were then incubated with different concentrations of Cu2+. Our results showed that Cu2+ induced a concentration and time-dependent rise in mitochondrial ROS formation, lipid peroxidation, and mitochondrial membrane potential collapse before mitochondrial swelling ensued. Increased disturbance in oxidative phosphorylation was also shown by decreased ATP concentration and decreased ATP/ADP ratio in Cu2+-treated isolated mitochondria. In addition, collapse of mitochondrial membrane potential (MMP), mitochondrial swelling, and release of cytochrome c following of Cu2+ treatment were well inhibited by pretreatment of mitochondria with CsA and BHT. Our results showed that Cu2+ could interact with respiratory complexes (I, II, and IV). This suggests that Cu2+-induced liver toxicity is the result of metal’s disruptive effect on liver hepatocyte mitochondrial respiratory chain that is the obvious cause of Cu2+-induced ROS formation, lipid peroxidation, mitochondrial membrane potential decline, and cytochrome c expulsion which start cell death signaling.  相似文献   

16.
We investigated the properties of the permeability transition pore (PTP) in Saccharomyces cerevisiae in agar-embedded mitochondria (AEM) and agar-embedded cells (AEC) and its role in yeast death. In AEM, ethanol-induced pore opening, as indicated by the release of calcein and mitochondrial membrane depolarization, can be inhibited by CsA, by Cpr3 deficiency, and by the antioxidant glutathione. Notably, the pore opening is inhibited, when mitochondria are preloaded by EGTA or Fluo3 to chelate matrix Ca2+, or are pretreated with 4-Br A23187 to extract matrix Ca2+, prior to agar-embedding, or when pore opening is induced in the presence of EGTA; opened pores are re-closed by sequential treatment with CsA, 4-Br A23187 plus EGTA and NADH, indicating endogenous matrix Ca2+ involvement. CsA also inhibits the pore opening with low conductance triggered by exogenous Ca2+ transport with ETH129. In AEC, the treatment of tert-butylhydroperoxide, a pro-oxidant that triggers transient pore opening in high conductance in AEM, induces yeast death, which is also dependent on CsA and Cpr3. Furthermore, AEMs from mutants lacking three ADP/ATP carrier (AAC) isoforms and with defective ATP synthase dimerization exhibit high and low conductance pore openings with CsA sensitivity, respectively. Collectively, these data show that the yeast PTP is regulated by Cpr3, endogenous matrix Ca2+, and reactive oxygen species, and that it is involved in yeast death; furthermore, ATP synthase dimers play a key role in CsA-sensitive pore formation, while AACs are dispensable.  相似文献   

17.
《BBA》2023,1864(1):148914
Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This “non-conventional” MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.  相似文献   

18.
《Phytomedicine》2015,22(4):462-468
Background: The low abundant cajanin stilbene acid (CSA) from Pigeon Pea (Cajanus cajan) has been shown to kill estrogen receptor α positive cancer cells in vitro and in vivo. Downstream effects such as cell cycle and apoptosis-related mechanisms have not been analyzed yet.Material and methods: We analyzed the activity of CSA by means of flow cytometry (cell cycle distribution, mitochondrial membrane potential, MMP), confocal laser scanning microscopy (MMP), DNA fragmentation assay (apoptosis), Western blotting (Bax and Bcl-2 expression, caspase-3 activation) as well as mRNA microarray hybridization and Ingenuity pathway analysis.Results: CSA induced G2/M arrest and apoptosis in a concentration-dependent manner from 8.88 to 14.79 µM. The MMP broke down, Bax was upregulated, Bcl-2 downregulated and caspase-3 activated. Microarray profiling revealed that CSA affected BRCA-related DNA damage response and cell cycle-regulated chromosomal replication pathways.Conclusion: CSA inhibited breast cancer cells by DNA damage and cell cycle-related signaling pathways leading to cell cycle arrest and apoptosis.  相似文献   

19.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

20.
Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号