首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
F Cramer  U Englisch  W Freist  H Sternbach 《Biochimie》1991,73(7-8):1027-1035
Isoleucyl-tRNA synthetases isolated from commercial baker's yeast and E coli were investigated for their sequences of substrate additions and product releases. The results show that aminoacylation of tRNA is catalyzed by these enzymes in different pathways, eg isoleucyl-tRNA synthetase from yeast can act with four different catalytic cycles. Amino acid specificities are gained by a four-step recognition process consisting of two initial binding and two proofreading steps. Isoleucyl-tRNA synthetase from yeast rejects noncognate amino acids with discrimination factors of D = 300-38000, isoleucyl-tRNA synthetase from E coli with factors of D = 600-68000. Differences in Gibbs free energies of binding between cognate and noncognate amino acids are related to different hydrophobic interaction energies and assumed conformational changes of the enzyme. A simple hypothetical model of the isoleucine binding site is postulated. Comparison of gene sequences of isoleucyl-tRNA synthetase from yeast and E coli exhibits only 27% homology. Both genes show the 'HIGH'- and 'KMSKS'-regions assigned to binding of ATP and tRNA. Deletion of 250 carboxyterminal amino acids from the yeast enzyme results in a fragment which is still active in the pyrophosphate exchange reaction but does not catalyze the aminoacylation reaction. The enzyme is unable to catalyze the latter reaction if more than 10 carboxyterminal residues are deleted.  相似文献   

2.
The reaction of fluorescamine with primary amino groups of tRNAs was investigated. The reagent was attached under mild conditions to the 3'-end of tRNAPhe-C-C-A(3'NH) from yeast and to the minor nucleoside x in E. coli tRNAArg, tRNALys, tRNAMet, tRNAIle and tRNAPhe. The primary aliphatic amino groups of these tRNAs react specifically so that the fluorescamine dye is not attached to the amino groups of the nucleobases. E. coli tRNA species modified on the minor nucleoside X47 can all be aminoacylated. An involvement of the minor modified nucleoside X47 in the tRNA: synthetase interaction is detected. Native tRNALys-C-C-A from E. coli can be phenylalanylated by phenylalanyl-tRNA synthetase from yeast, whereas this is not the case for fluorescamine treated tRNALys-C-C-A(XF47). Pre-tRNAPhe-C-C-A(XF47) forms a ternary complex with the elongation factor Tu:GTP from E. coli, binds enzymatically to the ribosomal A-site and is active in poly U dependent poly Phe synthesis. Fluorescamine-labelled E. coli tRNAs provide new substrates for the study of protein biosynthesis by spectroscopic methods.  相似文献   

3.
4.
5.
6.
Computer simulations of the elongation cycle of bacterial protein biosynthesis demonstrate that the accuracy of protein biosynthesis cannot be explained by a mechanism which involves only an initial selection and a proofreading reaction. It is suggested that only a combination of initial selection, proofreading and a retardation of non-cognate flows at the level of the EF-Tu-catalyzed GTPase reaction and the peptidyl transfer can guarantee sufficient accuracy at reasonable costs. According to this view the ribosome functions as an allosteric enzyme which, in both its affinity and enzymatic activity, responds optimally only to the cognate substrate. Detailed calculations show, furthermore, that increasing the concentration of EF-G and EF-Ts above the level prevailing in vivo only slightly increases the rate of elongation. In contrast, increasing the concentration of EF-Tu over aminoacyl-tRNA (aa-tRNA) leads to a sharp decline in the rate of elongation. While varying the concentration of EF-G has no effect on the accuracy of protein synthesis, excess of EF-Tu over aminoacyl-tRNA leads to a large increase in accuracy. These results suggest a mechanism by which the accuracy of protein biosynthesis is preserved during amino acid starvation.  相似文献   

7.
8.
While all studies of protein synthesis to date have employed monoaminoacylated transfer RNAs, there have been reports that bisphenylalanyl-tRNA is formed by Thermus thermophilus phenylalanyl-tRNA synthetase. Such tandemly activated tRNAs have now been prepared by chemicoenzymatic techniques and are shown to function in both prokaryotic and mammalian protein synthesizing systems. They exhibit characteristics consistent with their possible utility under extreme conditions in natural systems and have important potential advantages for protein elaboration in cell free systems. Mechanistically, the bisaminoacylated tRNAs bind to the ribosomal A-site and utilize the aminoacyl moiety attached to the 3'-position of the terminal adenosine for addition to the growing polypeptide chain. Following translocation to the P-site and transfer of the formed peptidyl moiety, the donor tRNA dissociates from the ribosome as a monoaminoacylated tRNA capable of functioning in a subsequent polypeptide elongation step.  相似文献   

9.
Mechanism of protein biosynthesis.   总被引:27,自引:2,他引:27       下载免费PDF全文
  相似文献   

10.
Analysis of tRNAs during the development of Drosophila   总被引:8,自引:0,他引:8  
Conditions for the chromatography of radioactively labeled Drosophila aminoacyl-tRNAs on reversed-phase 5 columns have been established. All 20 aminoacyl-tRNAs from first instar, third instar, and adult flies were compared. While some of the aminoacyl-tRNAs remain essentially unchanged during the development of Drosophila, others show marked quantitative changes. These changes are discussed in relation to possible control mechanisms during development.  相似文献   

11.
A drastic inhibition of protein biosynthesis in rat liver in vivo by cycloheximide (CHI) (0.3 mg/100 g of body weight) first caused an increase of RNA synthesis (after 1 hour), which was then followed by its decrease. Partial gradual restoration of the protein synthesis level was shown to be accompanied by a repeated increase of RNA synthesis (12 hs) and its normalisation after 24 hs. The first maximum of RNA synthesis increase in the isolated nuclei system was AU-type RNA synthesis (sensitive to alpha-amanitine), the second one was due to GC-type RNA synthesis (resistant to this toxin). Purified chromatine template activity in the system with E. coli RNA polymerase (by 14%) an hour after CHI treatment, but 3 hrs later was decreased and subsequently restored (12 hrs after CHI injection). The changes of RNA biosynthesis induced by prolonged protein synthesis inhibition suggest the existence of continuous RNA synthesis control in nuclei. This control is realized by translation system using the feed back principle.  相似文献   

12.
The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel+ and rel- cells, under valyltRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer to the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel+ strain appear more labelled than those from the rel- strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene.  相似文献   

13.
14.
15.
The frequency of errors in protein biosynthesis.   总被引:21,自引:0,他引:21       下载免费PDF全文
  相似文献   

16.
Dihydrouridine-deficient tRNAs in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2       下载免费PDF全文
R Y Lo  J B Bell    K L Roy 《Nucleic acids research》1982,10(3):889-902
A mutation in Saccharomyces cerevisiae, designated mia, is responsible for the production of isoaccepting tRNA molecules with reduced extents of nucleoside modifications. The mia isoacceptors of tRNAPhe and one of the mutant isoacceptors of tRNATyr were highly purified for nucleoside composition analyses. The data indicate that the mutant isoacceptors are lacking some of the dihydrouridine moieties. This is consistent with our previous hypothesis that the mutant isoacceptors were accumulated due to a defect in a modification process [Lo, R.Y.C. and Bell, J.B. (1981) Current Genetics 3, 73-82). Data from in vitro poly-U translation experiments also support the previous results, suggesting in vivo biological activity of these mutant tRNAs.  相似文献   

17.
18.
19.
Fast neurotransmission in the brain is typically mediated by local actions of transmitters at ionotropic receptors within synaptic contacts. Recent studies now reveal that, in addition to point-to-point signaling, amino-acid transmitters mediate diffuse signaling at extrasynaptic metabotropic receptors.  相似文献   

20.
The rate of synthesis of ribosomal proteins relative to that of total protein was measured at various times during recovery from arginine starvation in isogenic re+ and rel- strains of Escherichia coli K 12. Total ribosomal proteins are preferentially synthesized early during recovery. Higher rates of synthesis are obtained in the rel+ strain than in the rel- strain. Differential rates of synthesis of individual ribosomal proteins are observed at the various times studied. The rate of synthesis of individual proteins increases with time up to maximum values then the rates come down to values similar to those found in exponentially growing cells. The time of restart of synthesis of each protein has been estimated (1) by the time at which the maximum value is reached, and (2) by measuring the rate of synthesis at early time (3 min). Most ribosomal proteins behave similarlly in rel- and rel+ strains. Proteins have been listed from highly labelled (early proteins) to poorly labelled (late proteins). The significance of the order of restart is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号