首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study investigates the effect of host desiccation on entomopathogenic nematode (EPN) development, emergence, infectivity, and cross-protection against secondary environmental stress. Galleria mellonella hosts infected with the EPN Steinernema carpocapsae A10 were allowed to dehydrate in an environmental chamber for up to 56 days at 23 degrees C achieving a weight loss of approximately 86% by day 44 post-infection. Host carcasses were rehydrated on water-saturated filter paper in White traps to collect emergent infective juveniles (IJ) at specific time intervals. Populations were counted with an apparent peak coinciding with desiccated hosts rehydrated at 24-day post-infection. Desiccation-stressed IJ populations from each time interval were tested for infectivity, and cross-resistance to secondary temperature and pH stresses and were found to have significant increases in both infectivity and protection from extremes of temperature and pH compared with controls. Total aqueous soluble protein profiles from control and desiccation-stressed IJs were analyzed using 10% SDS Laemmli gels. Several novel proteins were over-expressed in EPN from hosts subjected to desiccation suggesting the induction and expression of stress response genes.  相似文献   

2.
Our study describes the basic ecological characteristics of the entomopathogenic nematode Steinernema anatoliense including its response to temperature, moisture, and host range. The effect of temperature and soil moisture on the infection of Galleria mellonella larvae by S. anatoliense was determined. The temperature range for infectivity was greater than that for development. The optimal temperature for infection and development was 25 degrees C. Although S. anatoliense infected the hosts at 10 degrees C, no reproduction occurred at this temperature. This nematode species that was isolated from a cold region of Turkey exhibited warm-adapted temperature characteristics. Optimum water content of the soil for S. anatoliense to infect the host was 10%.  相似文献   

3.
Process-based population models need sound and comprehensive data on an animal's response to climatic factors if they are to function reliably under a wide range of climatic conditions. To this end, different aged egg masses of the livestock tick, Rhipicephalus (Boophilus) microplus, were either desiccated in atmospheres with saturation deficits of 5, 10, 15 or 20 mmHg at 20 or 26 degrees C, or chilled at temperatures of 5, 10 or 14 degrees C with a saturation deficit of 1 mmHg for varying periods. The survival rate of the eggs through to hatching was related to the initial age of the eggs, the severity of the treatments and the duration of exposure. We established a relationship between desiccation and weight loss of eggs and, secondarily between weight loss and mortality. Mortality increased with weight loss until it reached 100% when the weight loss was about 35%. Low temperatures were increasingly detrimental to eggs as they reduced from 14 to 5 degrees C. Freshly laid eggs were more susceptible to both low temperatures and desiccation than were older eggs. Larvae emerging from eggs that were stressed by either cold or desiccation lived for a shorter time under optimal conditions than did larvae from eggs incubated under optimal conditions. Larvae from eggs with the same hatching rate had the same viability, whether the stress was induced by desiccation or low temperatures. Models were developed to describe the dynamics of weight loss of eggs with desiccation, the accumulation of cold stress of the eggs, and their effects on egg survival and larval viability. These data provide a sound basis for the development of predictive models for use under field conditions, although the response of different aged eggs to low temperatures was too variable to allow us to develop an accurate model to describe that relationship. Field models will also need to take diurnal temperature fluctuations into account.  相似文献   

4.
Rapid cold-hardening (RCH) and cold acclimation (ACC) were examined in eggs of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). When eggs incubated at 25 degrees C were transferred directly to conditions of -22 degrees C for 2h, less than 30% survived, whereas exposure to 0 degrees C for 4h prior to transfer to -22 degrees C increased survival to nearly 60%. The rapidly enhanced cold tolerance (RCH) was transient and lost rapidly after 1h at 25 degrees C. Incubation at 15.5 degrees C for 9 days (ACC) also enhanced cold tolerance. Comparison of the cold tolerance of non-treated eggs and eggs pre-treated to give RCH, ACC, or ACC+RCH allowed the relationship between the two hardening processes to be determined. At a mild subzero temperature (-10 degrees C) an RCH effect was not detected, whereas only RCH is effective at the severest subzero temperature just above the SCP (-26 degrees C). At intermediate temperatures (-16, -22 and -25 degrees C), ACC and RCH enhanced survival in combination. Therefore, the two hardening processes have different physiological bases but operate concomitantly over a wide temperature range.  相似文献   

5.
We investigated the effects of temperature on transovarial transmission and feminisation by Nosema granulosis, a microsporidian sex ratio distorter of the brackish water amphipod Gammarus duebeni. There was no difference in parasite transmission efficiency to the F(1) eggs of infected females maintained under two temperature conditions, 5 and 10 degrees C (89 and 86%, respectively). When F(1) individuals were screened as adults, the proportion infected was also similar at both temperatures (74 and 75%, respectively). However, transmission to the eggs of the F(2) generation was significantly reduced at low temperatures (61% at 5 degrees C and 91% at 10 degrees C). In addition, feminisation efficiency was reduced substantially at low temperatures; at 10 degrees C, a calculated 85% of infected males were feminised, but at 5 degrees C only 49% were feminised. This is the first evidence for incomplete feminisation and temperature-dependent transmission and feminisation by this sex ratio distorter. We examine the consequences for parasite spread and maintenance in natural populations using a model to predict parasite prevalence in large populations. Reduced feminisation at low temperatures impedes the spread of the parasite so that it attains a substantially lower frequency, or may even be excluded, from host populations.  相似文献   

6.
The effect of temperature on pine wilt development in Scots pine (Pinus sylvestris) was examined in three experiments. Container-grown pines (4-6 years old) inoculated with 1,500 Bursaphelenchus xylophilus were incubated at constant temperatures in growth chamber for 8 weeks, then at a temperature range of 15-30 C in a greenhouse for 10-12 weeks. Nematode infection was greater, tree mortality was higher, and disease incubation was shorter at 32 and 30 C than at 25, 23, 18, and 11 C. Foliar symptoms developed more rapidly and uniformly at higher temperatures. Ninety-five percent of tree deaths at 32 and 30 C and 88% at 25 and 23 C occurred within the 8-week exposure to constant temperatures. Mortality at 18, 16, and 11 C occurred only after transfer to the greenhouse. Results indicate that pine wilt incidence is directly related and disease incubation period is inversely related to temperature and that high-temperature stress predisposes Scots pine to lethal infection by B. xylophilus.  相似文献   

7.
The role of temperature in the induction of diapause in Trichogramma cordubensis (Hymenoptera: Trichogrammatidae), under controlled laboratory conditions, was investigated using Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs as hosts. Results indicate that prestorage temperatures and the duration of exposure of the parasitoids to these temperatures affected the induction of diapause. It was possible to induce diapause in prepupae of T. cordubensis by exposing the preimaginal stages (prior to the prepupal stage) to 10°C for at least 30 days, but adults emerged without diapause when the duration of exposure was of only 10 or 20 days. Parasitoids failed to enter diapause when prestorage temperatures were 7 or 12°C, regardless of the duration of exposure. However, at these two temperatures, preimaginal development of T. cordubensis was delayed, allowing short-term storage (40 days at induction temperatures followed by 30 days at 3°C) by keeping parasitoids in quiescence without reducing the percentages of adult emergence. Good percentages of adult emergence after long-term low-temperature storage (30 or 40 days at 10°C followed by six months at 3°C) occurred only when T. cordubensis was in diapause. The long-term storage of parasitoids in diapause allows an enlargement in the mass rearing potentialities of this species for future biological control releases by allowing producers to stockpile the parasitoids for release in the field season.  相似文献   

8.
We incubated eggs of Calotes versicolor at four constant temperatures ranging from 24 degrees C to 33 degrees C to assess the effects of incubation temperature on hatching success, embryonic use of energy, and hatchling phenotypes that are likely to affect fitness. All viable eggs increased in mass throughout incubation due to absorption of water, and mass gain during incubation was dependent on initial egg mass and incubation temperature. The average duration of incubation at 24 degrees C, 27 degrees C, 30 degrees C, and 33 degrees C was 82.1 days, 60.5 days, 51.4 days, and 50.3 days, respectively. Incubation temperature affected hatching success, energy expenditure for embryonic development, and several hatchling traits examined, but it did not affect the sex ratio of hatchlings. Hatching success was lowest (3.4%) at 33 degrees C, but a higher incidence of deformed embryos was recorded from eggs incubated at this temperature compared to eggs incubated at lower temperatures. Most of the deformed embryos died at the last stage of incubation. Energy expenditure for embryonic development was, however, higher in eggs incubated at 33 degrees C than those similarly incubated at lower temperatures. A prolonged exposure of eggs of C. versicolor at 33 degrees C appears to have an adverse and presumably lethal effect on embryonic development. Hatching success at 24 degrees C was also low (43.3%), but hatchlings incubated at 24 degrees C did not differ in any of the examined traits from those incubated at two intermediate temperatures (27 degrees C and 30 degrees C). Hatchlings incubated at 33 degrees C were smaller (snout-vent length, SVL) than those incubated at lower incubation temperatures and had larger mass residuals (from the regression on SVL) as well as shorter head length, hindlimb length, tympanum diameter, and eye diameter relative to SVL. Hatchlings from 33 degrees C had significantly lower scores on the first axis of a principal component analysis representing mainly SVL-free head size (length and width) and fore- and hindlimb lengths, but they had significantly higher scores on the second axis mainly representing SVL-free wet body mass. Variation in the level of fluctuating asymmetry in eye diameter associated with incubation temperatures was quite high, and it was clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. Newly emerged hatchlings exhibited sexual dimorphism in head width, with male hatchlings having larger head width than females.  相似文献   

9.
The seasonal dynamics of entomopathogenic nematodes (EPNs) of the genus Steinernema and Heterorhabditis were studied during one season in meadow and oak wood habitats, in the vicinity of Ceské Budejovice, Czech Republic. The influences of soil temperature, moisture, and abundance of suitable hosts on EPN dynamics were investigated. The host range of these nematodes, in both habitats was also observed. A total of four EPN species were found in both habitats. Steinernema affine was the dominant species both in oak wood and in meadow. Additionally, the oak wood habitat was inhabited by S. kraussei and S. weiseri; the meadow habitat by Heterorhabditis bacteriophora. The mean abundance of total EPN community was 28,000ind./m(2) in oak wood and 11,000ind./m(2) in meadow. The seasonal dynamics of entomopathogenic nematodes in both habitats were characterized by high nematode densities in the beginning of the season, followed by a rapid decrease, and then stabilization. EPN abundances did not show any apparent correlation with soil temperature and moisture, but they were negatively correlated with the abundance of suitable insect hosts. Inter- and intraspecific competition for limited nutrients (hosts) probably played a major role in EPN seasonal dynamics. Broad host range of entomopathogenic nematodes in both habitats was predominantly represented by dipteran and coleopteran larvae. Most common hosts belonged to the families Asilidae, Bibionidae, and Empididae (Diptera), as well as Carabidae and Curculionidae (Coleoptera).  相似文献   

10.
While maintained under all combinations of three temperatures and two RH, fifth instar larvae of the Mediterranean flour moth, Ephestia kuehniella were fed wheat treated with spores and crystals of Bacillus thuringiensis var. kurstaki. Larvae that had fed on wheat with the bacterial preparation contained higher concentrations of nodules in their haemocoel than did larvae fed on wheat without bacteria. Nodule concentrations in larvae fed untreated wheat were unaffected by temperature or relative humidity. Larvae fed treated wheat had higher nodule concentrations at 32 degrees C than at 15 and 23 degrees C, and higher nodule concentrations at a relative humidity of 85% than at 43%. The percentage of larvae that pupated was lower when larvae were fed the bacterial preparation, and was significantly higher at 23 degrees C than at 15 and 32 degrees C, regardless of whether larvae were fed bacteria or not. Less time was required for larvae to develop to pupation at higher temperatures and at higher humidity. Mean time to pupation was lower for bacteria-fed larvae than for those fed untreated wheat, and this appeared to be a result of truncation of the distribution of times to pupation because only rapidly developing larvae survived to pupation.  相似文献   

11.
The ability to acquire different types of the symbiotic dinoflagellate Symbiodinium (zooxanthellae) from the environment was investigated using aposymbiotic scyphistomae of the jellyfish Cassiopea xamachana. Non-symbiotic scyphistomae were placed on an offshore Florida patch reef and in Florida Bay during 3- and 5-day periods in March, and 5-day exposures in May, August and December of 2003. Scyphistomae were maintained in culture for several months, after which members of clades A, B, C and D Symbiodinium were detected in these hosts by denaturing gradient gel electrophoresis (DGGE) analyses. These findings contrast with naturally collected C. xamachana medusa from Florida Bay where all specimens possessed only Symbiodinium type A1. Furthermore, the polyps did not acquire the symbionts found in nearby cnidarian colonies, suggesting that a diverse pool of symbiont lineages exists in the environment. These results support previous laboratory studies where aposymbiotic hosts were initially non-selective and capable of acquiring many kinds of Symbiodinium. The specificity seen in adult hosts is likely a result of post-infection processes due to competitive exclusion or other mechanisms. A higher percentage of polyps became infected after 5 days of exposure, compared to 3 days, and no infections were observed in laboratory controls held in filtered seawater. Infections were lowest (50% at both sites) in March of 2003, when seawater temperatures were at their annual minima. Infection was 100% in scyphistomae exposed for 5 days during the months of May, August and December of 2003. These findings suggest that this host system, in addition to addressing questions of host-symbiont selectivity, can be employed to monitor and define the abundance and distribution of natural pools of Symbiodinium.  相似文献   

12.
The effect of thermal acclimation on trehalose accumulation and the acquisition of thermotolerance was studied in three species of entomopathogenic nematodes adapted to either cold or warm temperatures. All three Steinernema species accumulated trehalose when acclimated at either 5 or 35 degrees C, but the amount of trehalose accumulation differed by species and temperature. The trehalose content of the cold adapted Steinernema feltiae increased by 350 and 182%, of intermediate Steinernema carpocapsae by 146 and 122% and of warm adapted Steinernema riobrave by 30 and 87% over the initial level (18.25, 27.24 and 23.97 microg trehalose/mg dry weight, respectively) during acclimation at 5 and 35 degrees C, respectively. Warm and cold acclimation enhanced heat (40 degrees C for 8h) and freezing (-20 degrees C for 4h) tolerance of S. carpocapsae and the enhanced tolerance was positively correlated with the increased trehalose levels. Warm and cold acclimation also enhanced heat but not freezing tolerance of S. feltiae and the enhanced heat tolerance was positively correlated with the increased trehalose levels. In contrast, warm and cold acclimation enhanced the freezing but not heat tolerance of S. riobrave, and increased freezing tolerance of only warm acclimated S. riobrave was positively correlated with the increased trehalose levels. The effect of acclimation on maintenance of original virulence by either heat or freeze stressed nematodes against the wax moth Galleria mellonella larvae was temperature dependent and differed among species. During freezing stress, both cold and warm acclimated S. carpocapsae (84%) and during heat stress, only warm acclimated S. carpocapsae (95%) maintained significantly higher original virulence than the non-acclimated (36 and 47%, respectively) nematodes. Both cold and warm acclimated S. feltiae maintained significantly higher original virulence (69%) than the non-acclimated S. feltiae (0%) during heat but not freezing stress. In contrast, both warm and cold acclimated S. riobrave maintained significantly higher virulence (41%) than the non-acclimated (14%) nematodes during freezing, but not during heat stress. Our data indicate that trehalose accumulation is not only a cold associated phenomenon but is a general response of nematodes to thermal stress. However, the extent of enhanced thermal stress tolerance conferred by the accumulated trehalose differs with nematode species.  相似文献   

13.
Ctenocephalides felis felis larvae were infected with Dipylidium caninum at a range of temperatures from 20 degrees - 35 degrees C at 3 mm Hg saturation deficit (SD) and 30 degrees C at 8 mm Hg SD. Hosts were subsequently dissected at 6, 9 and 12 days after infection. Four replicate experiments were performed and results of development, and host reactions analysed by the Genstat computer programme. These were found to depend on the temperature and saturation deficit of the environment. Unlike previous findings, parasite development and host reaction were found to be independent of host development. Host reaction was more marked and prolonged at 20 degrees - 25 degrees C than at higher temperatures. No perceptible growth of the parasite occurred at 20 degrees C. The development patterns of growth at the higher temperatures were similar but shifted in time so that faster growth occurred at higher temperatures. Rate of growth was fastest at 35 degrees C, despite the fact that this temperature was unfavourable to the hosts, all of which died at the time of pupation.  相似文献   

14.
Globally, aquaculture industries involved with commercial culture of kingfish (Seriola spp.) experience outbreaks of monogenean parasites, which can cause heavy stock losses. In Australia and New Zealand, aquaculturists of kingfish Seriola lalandi incur financial losses caused by two monogenean species: Benedenia seriolae and Zeuxapta seriolae which parasitise the skin and gills, respectively. This study provides information on some basic temperature-dependent life-cycle parameters of these problematic monogeneans on S. lalandi. Hatching times and age at maturity were inversely related to water temperature within the range experienced by wild kingfish in New Zealand (13-21 degrees C). Mature B. seriolae in vitro laid on average 37 eggs/day that hatched over approximately 4 days; peak hatching occurred 9, 11 and 22 days post-deposition at temperatures of 21, 17.5 and 13+/-1.0 degrees C, respectively. Z. seriolae in vitro laid on average 246 eggs/day that hatched over 2 days; peak hatching occurred 7, 9 and 15 days post-deposition at these respective temperatures. B. seriolae matured within 20, 25 and 48 days p.i. at 21, 18 and 13 degrees C. Z. seriolae matured within 25, 37 and >52 days p.i. at the same temperatures. This research describes stages in the reproductive development of B. seriolae and Z. seriolae and discusses the inclusion of basic parasitic life-cycle parameters into management strategies designed to maximise treatment efficacy and limit monogenean epizootics in sea-cage kingfish culture.  相似文献   

15.
The outcome of mixed infection by three species of microsporidia in the genera Endoreticulatus, Nosema, and Vairimorpha, isolated from different populations of Lymantria dispar in Bulgaria, was evaluated in the laboratory. All possible combinations of two species were administered either simultaneously or sequentially to larvae, and mortality, duration of development, and larval weight at 20 days post-infection (simultaneous inoculation) or 23 days post-infection (sequential inoculation) were chosen as the outcome variables. Larvae were also dissected and the presence of each species of microsporidia and the tissues infected were recorded for each treatment. Effects of infection were dependent on both host sex and the type of exposure. Infected larvae were more likely to die than uninfected larvae, but there were no differences in mortality between single and mixed infections. Addition of Endoreticulatus to infections of Nosema or Vairimorpha significantly increased duration of development to the fourth ecdysis; this effect was additive. Addition of Nosema or Vairimorpha to an existing infection had no such effect. When Nosema was administered simultaneously with Endoreticulatus or Vairimorpha, infected larvae weighed more than larvae that had single infections with either pathogen. Nosema was displaced from the silk glands by Vairimorpha and Nosema suppressed octospore formation by Vairimorpha in fat body. The histological evidence combined with the data on larval weight supports the hypothesis that competition occurred in mixed infections.  相似文献   

16.
Curculio sikkimensis (Coleoptera: Curculionidae) requires one or more years to complete its life cycle, owing to prolonged larval diapause. To compare the effects of temperature cycles and total periods of chilling on the termination of prolonged diapause, larvae were subjected to different chilling (5 degrees C) and warming (20 degrees C) cycles ranging from 30 to 720 days, and all cycles were repeated until the sum of chilling and warming periods reached 720 days. The prolonged diapause of C. sikkimensis was more effectively terminated by repeated cycles of chilling and warming than by prolonging the continuous chilling period. However, extremely short temperature cycles were not highly effective in enhancing diapause termination, even when such cycles were repeated many times. To examine the role of warming periods on diapause termination, diapause larvae were subjected to a sequence of chilling (120 days at 5 degrees C) and warming (240 days at 20 degrees C) with a warming period (0-120 days at 20 degrees C) inserted in the chilling period. Diapause larvae that were not reactivated in the first chilling period required exposure to a certain period of warming before they were able to complete diapause development in the subsequent chilling. Thus, C. sikkimensis appears to spread its reactivation times over several years in response to seasonal temperature cycles.  相似文献   

17.
The ectoparasitoid Habrobracon hebetor (Say) attacks stored-product infesting pyralid moths that are able to overwinter under extremely cold conditions. The extent to which H. hebetor can withstand these conditions is not known, but has important implications for the ability of H. hebetor to provide long-term suppression of these pests in temperate climates. We investigated basic cold hardiness aspects of a mutant eye-color strain of H. hebetor. Feeding larvae and adults of H. hebetor had supercooling points (SCPs) at temperatures higher than those of eggs and pupae. Mean SCPs of females and males were equivalent, as were those of naked and silk-encased pupae. Feeding on honey prior to being subjected to low temperatures significantly increased the SCP of adult females by approximately 8 degrees C. Mortality of pupae and adults increased significantly whenever the temperature dropped below the mean SCP, indicating that H. hebetor does not tolerate freezing. For pupae and adults exposed to -12 and -5 degrees C, the hourly mortality rate increased with time of exposure. Pupae and adults exposed to -12 degrees C for different time intervals showed high mortality after only 1d of exposure. At -5 degrees C, none survived 12d of exposure. A better understanding of how well this parasitoid tolerates low temperatures will be useful in evaluating its potential as a biological control agent of stored-product moths in temperate regions.  相似文献   

18.
Highly virulent Toxoplasma gondii tachyzoite multiplication was recorded on the 4th and 5th days post cultivation (dpc) in seven selected cell lines either with or without fetal calf serum (FCS) in the maintenance media. The multiplication rate was slightly lower in the absence of FCS. The cell line mono-layers collapsed dying by the 6th day of infection both in presence or absence of FCS at 37 degrees C. Carcinoma of human larynx (Hep2) and Madian Darby Bovine Kidney (MDBK) cell lines were the most suitable for in vitro multiplication, followed by that of African green monkey kidney cells (VERO), pooled kidney from 1-day-old hamster (BHK), rabbit kidney cells (RK13) and human rhabdomyosarcoma (RDA), while Chicken embryo cells (CER) were the least suitable. In absence of FCS, CER, BHK, Hep2, RDA and MDBK were able to maintain virulent tachyzoites at +4 degrees C for 14 days. The infectivity of the tachyzoites was however lower, killing 40% of the inoculated mice. Tachyzoites survived at room temperature, in the dark, for 14 days in Hep2, RDA and MDBK. However, Hep2 was the only one able to keep virulent tachyzoites until 21 dpc at room temperature and at +4 degrees C. Hep2 propagated tachyzoites were still alive but with low infectivity up to 28 dpc. The cell-lines failed to support the development of tachyzoites after 7 dpc at 37 degrees C and after the 35 dpc at lower temperatures.  相似文献   

19.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

20.
Entomopathogenic nematodes (EPN) frequently kill their host within 1-2 days, and interest in EPN focuses mainly on their lethality. However, insects may take longer to die, or may fail to die despite being infected, but little is known about the effects of EPN infection on insects, other than death. Here we investigate both lethal and sub-lethal effects of infection by two EPN species, Steinernema carpocapsae and Heterorhabditis downesi, on adults of the large pine weevil, Hylobius abietis. Following 12 h nematode-weevil contact in peat, S. carpocapsae killed a significantly higher proportion of weevils (87-93%) than H. downesi (43-57%) at all concentrations tested. Less than 10% of weevils were dead within 2 days, and weevils continued to die for up to 10 days after exposure (LT50 of 3 days or more). In a separate experiment, live weevils dissected 6 days after a 24 h exposure to nematodes on filter paper harbored encapsulated and dead nematodes, showing that weevils could defend themselves against infection. Some live weevils also harbored live nematodes 6 days after they had been removed from the nematode infested medium. Feeding by weevils was not affected by infection with, or exposure to, either species of EPN. We discuss these results in relation to the use of EPN in biological control against H. abietis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号