首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required for proper response to DNA damage. In particular, the bmh1-103 and bmh1-266 mutant alleles cause defects in G1/S and G2/M DNA damage checkpoints, whereas only the G2/M checkpoint is altered by the bmh1-169 and bmh1-221 alleles. Impaired checkpoint responses correlate with the inability to maintain phosphorylated forms of Rad53 and/or Chk1, suggesting that Bmh proteins might regulate phosphorylation/dephosphorylation of these checkpoint kinases. Moreover, several bmh1 bmh2Delta mutants are defective in resuming DNA replication after transient deoxynucleotide depletion, and all display synthetic effects when also carrying mutations affecting the polalpha-primase and RPA DNA replication complexes, suggesting a role for Bmh proteins in DNA replication stress response. Finally, the bmh1-169 bmh2Delta and bmh1-170 bmh2Delta mutants show increased rates of spontaneous gross chromosomal rearrangements, indicating that Bmh proteins are required to suppress genome instability.  相似文献   

2.
3.
4.
5.
6.
7.
The Swi1 and Swi3 proteins are required for mat1 imprinting and mating-type switching in Schizosaccharomyces pombe, where they mediate a pause of leading-strand replication in response to a lagging-strand signal. In addition, Swi1 has been demonstrated to be involved in the checkpoint response to stalled replication forks, as was described for the Saccharomyces cerevisiae homologue Tof1. This study addresses the roles of Swi1 and Swi3 during a replication process perturbed by the presence of template bases alkylated by methyl methanesulfonate (MMS). Both the swi1 and swi3 mutations have additive effects on MMS sensitivity and on the MMS-induced damage checkpoint response when combined with chk1 and cds1, but they are nonadditive with hsk1. Cells with swi1, swi3, or hsk1 mutations are also defective in slowing progression through S phase in response to MMS damage. Moreover, swi1 and swi3 strains show increased levels of genomic instability even in the absence of exogenously induced DNA damage. Chromosome fragmentation, increased levels of single-stranded DNA, increased recombination, and instability of replication forks stalled in the presence of hydroxyurea are observed, consistent with the possibility that the replication process is affected in these mutants. In conclusion, Swi1, Swi3, and Hsk1 act in a novel S-phase checkpoint pathway that contributes to replication fork maintenance and to survival of alkylation damage.  相似文献   

8.
9.
The Saccharomyces cerevisiae protein kinase Rad53 plays a key role in maintaining genomic integrity after DNA damage and is an essential component of the ‘intra-S-phase checkpoint’. In budding yeast, alkylating chemicals, such as methyl methanesulfonate (MMS), or depletion of nucleotides by hydroxyurea (HU) stall DNA replication forks and thus activate Rad53 during S-phase. This stabilizes stalled DNA replication forks and prevents the activation of later origins of DNA replication. Here, we report that a reduction in the level of Rad53 kinase causes cells to behave very differently in response to DNA alkylation or to nucleotide depletion. While cells lacking Rad53 are unable to activate the checkpoint response to HU or MMS, so that they rapidly lose viability, a reduction in Rad53 enhances cell survival only after DNA alkylation. This reduction in the level of Rad53 allows S-phase cells to maintain the stability of DNA replication forks upon MMS treatment, but does not prevent the collapse of forks in HU. Our results may have important implications for cancer therapies, as they suggest that partial impairment of the S-phase checkpoint Rad53/Chk2 kinase provides cells with a growth advantage in the presence of drugs that damage DNA.  相似文献   

10.
11.
The packaging of eukaryotic DNA into chromatin is likely to be crucial for the maintenance of genomic integrity. Histone acetylation and deacetylation, which alter chromatin accessibility, have been implicated in DNA damage tolerance. Here we show that Schizosaccharomyces pombe Hst4, a homolog of histone deacetylase Sir2, participates in S-phase-specific DNA damage tolerance. Hst4 was essential for the survival of cells exposed to the genotoxic agent methyl methanesulfonate (MMS) as well as for cells lacking components of the DNA damage checkpoint pathway. It was required for the deacetylation of histone H3 core domain residue lysine 56, since a strain with a point mutation of its catalytic domain was unable to deacetylate this residue in vivo. Hst4 regulated the acetylation of H3 K56 and was itself cell cycle regulated. We also show that MMS treatment resulted in increased acetylation of histone H3 lysine 56 in wild-type cells and hst4Delta mutants had constitutively elevated levels of histone H3 K56 acetylation. Interestingly, the level of expression of Hst4 decreased upon MMS treatment, suggesting that the cell regulates access to the site of DNA damage by changing the level of this protein. Furthermore, we find that the phenotypes of both K56Q and K56R mutants of histone H3 were similar to those of hst4Delta mutants, suggesting that proper regulation of histone acetylation is important for DNA integrity. We propose that Hst4 is a deacetylase involved in the restoration of chromatin structure following the S phase of cell cycle and DNA damage response.  相似文献   

12.
13.
14.
Several recent reports have identified lysine 56 (K56) as a novel site of acetylation in yeast histone H3. K56 acetylation is predicted to disrupt some of the histone-DNA interactions at the entry and exit points of the nucleosome core particle. This modification occurs in virtually all the newly synthesised histones that are deposited into chromatin during S-phase. Cells with mutations that block K56 acetylation show increased genome instability and hypersensitivity to genotoxic agents that interfere with replication. Removal of K56 acetylation takes place in the G2/M phase of the cell cycle and is dependent upon Hst3 and Hst4, two proteins that are related to the NAD+-dependent histone deacetylase Sir2. In response to DNA damage checkpoint activation during S-phase, expression of Hst3/Hst4 is delayed to extend the window of opportunity in which K56 acetylation can act in the DNA damage response. The high abundance of histone H3 K56 acetylation, its regulation and strategic location in the nucleosome core particle raise a number of fascinating issues that we discuss here.  相似文献   

15.
16.
Cells respond to DNA or mitotic spindle damage by activating specific pathways that halt the cell cycle to allow for possible repair. Here, we report that inactivation of one of the Saccharomyces cerevisiae 14-3-3 proteins, Bmh1, as well as the bmh1-S189P bmh2 mutant, failed to exhibit normal spindle damage-induced cell cycle delay and conferred hypersensitivity to benomyl or nocodazole. These defects were additive with those conferred by the bub2 and mad2 spindle checkpoint mutations. Following cdc13-1-induced DNA damage, the 14-3-3 response was additive with those provided by the Mec1 (ATR-related)-controlled Rad53 (CHK2-related) and Chk1 (CHK1-related) checkpoint pathways and also distinct from the PKA (Protein Kinase A)-controlled response. Therefore, the budding yeast 14-3-3 proteins contribute to the robustness of the two major mitotic checkpoints and, by doing so, may also ensure optimal coordination between the responses to two distinct types of damage.  相似文献   

17.
We describe the identification and characterization of the BMH1 gene from the yeast Saccharomyces cerevisiae. The gene encodes a putative protein of 292 amino acids which is more than 50% identical with the bovine brain 14-3-3 protein and proteins isolated from sheep brain which are strong inhibitors of protein kinase C. Disruption mutants and strains with the BMH1 gene on multicopy plasmids have impaired growth on minimal medium with glucose as carbon source, i.e. a 30-50% increase in generation time. These observations suggest a regulatory function of the bmh1 protein. In contrast to strains with an intact or a disrupted BMH1 gene, strains with the BMH1 gene on multicopy plasmids hardly grew on media with acetate or glycerol as carbon source.  相似文献   

18.
In most eukaryotic cells, DNA replication is confined to S phase of the cell cycle [1]. During this interval, S-phase checkpoint controls restrain mitosis until replication is complete [2]. In budding yeast, the anaphase inhibitor Pds1p has been associated with the checkpoint arrest of mitosis when DNA is damaged or when mitotic spindles have formed aberrantly [3] [4], but not when DNA replication is blocked with hydroxyurea (HU). Previous studies have implicated the protein kinase Mec1p in S-phase checkpoint control [5]. Unlike mec1 mutants, pds1 mutants efficiently inhibit anaphase when replication is blocked. This does not, however, exclude an essential S-phase checkpoint function of Pds1 beyond the early S-phase arrest point of a HU block. Here, we show that Pds1p is an essential component of a previously unsuspected checkpoint control system that couples the completion of S phase with mitosis. Further, the S-phase checkpoint comprises at least two distinct pathways. A Mec1p-dependent pathway operates early in S phase, but a Pds1p-dependent pathway becomes essential part way through S phase.  相似文献   

19.
Eukaryotic cells coordinate chromosome duplication by assembly of protein complexes at origins of DNA replication and by activation of cyclin-dependent kinase and Cdc7p-Dbf4p kinase. We show in Saccharomyces cerevisiae that although Cdc7p levels are constant during the cell division cycle, Dbf4p and Cdc7p-Dbf4p kinase activity fluctuate. Dbf4p binds to chromatin near the G(1)/S-phase boundary well after binding of the minichromosome maintenance (Mcm) proteins, and it is stabilized at the non-permissive temperature in mutants of the anaphase-promoting complex, suggesting that Dbf4p is targeted for destruction by ubiquitin-mediated proteolysis. Arresting cells with hydroxyurea (HU) or with mutations in genes encoding DNA replication proteins results in a more stable, hyper-phosphorylated form of Dbf4p and an attenuated kinase activity. The Dbf4p phosphorylation in response to HU is RAD53 dependent. This suggests that an S-phase checkpoint function regulates Cdc7p-Dbf4p kinase activity. Cdc7p may also play a role in adapting from the checkpoint response since deletion of CDC7 results in HU hypersensitivity. Recombinant Cdc7p-Dbf4p kinase was purified and both subunits were autophosphorylated. Cdc7p-Dbf4p efficiently phosphorylates several proteins that are required for the initiation of DNA replication, including five of the six Mcm proteins and the p180 subunit of DNA polymerase alpha-primase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号