首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four catalytic components of the NADPH-dependent O2- generating oxidoreductase of human neutrophils have been identified. DCIP reductase, cytochrome c reductase and a chromophore 450-455 reductase are present in phorbol myristate acetate stimulated neutrophils and absent in resting cells and phorbol myristate acetate stimulated chronic granulomatous disease cells. Quinol dehydrogenase activity has also been demonstrated in activated and resting cells. Furthermore, a chromophore absorbing in the reduced state at 450-455 nm participates in superoxide production. This chromophore is reduced by NADPH or duroquinol and is missing in cell lysates derived from a patient with chronic granulomatous disease.  相似文献   

2.
The membrane-bound NADPH:O2 oxidoreductase of human neutrophils has been solubilized in approximately 70% yield and purified on concanavalin A-Sepharose and gel sieving columns of varying bed volumes and sieving ranges. The half-life of the solubilized oxidoreductase stored at 2-4 degrees C in the presence of 25% glycerol at pH 8.6 is approximately 30 h. The oxidoreductase contains a flavoprotein identifiable by its fluorescence spectrum for FAD which binds weakly to concanavalin A-Sepharose and elutes from gel sieving columns at a molecular weight range of approximately 51,000. This flavoprotein accounts for approximately 70% of the total FAD content found in granular membrane fractions recovered from activated neutrophils. Recovery of oxidoreductase activity from both concanavalin A-Sepharose affinity and gel sieving columns is affected by the resolution of the flavoprotein free of the cytochrome b component of the oxidoreductase. The resolved flavoprotein and cytochrome b appear unable to catalyze either NADH nor NADPH oxidase activities with O2, ferricyanide, or nitroblue tetrazolium salt serving as electron acceptors.  相似文献   

3.
Whether or not cytochrome b-559 is a necessary component of NADPH oxidase activity in neutrophils is still controversial. In highly purified plasma membranes isolated from resting neutrophils and lacking cytochrome b, addition of arachidonic acid induced an NADPH oxidase activity. This activity was similar to that of plasma membranes isolated from phorbol myristate acetate (PMA)-stimulated cells which possessed cytochrome b. Addition of arachidonic acid to the latter plasma membranes did not alter the oxidase activity. It can be concluded that plasma membranes isolated from resting neutrophils have, in the presence of arachidonic acid, an NADPH oxidase activity similar to that of PMA-stimulated cells, except that it is independent of cytochrome b-559.  相似文献   

4.
NADPH-cytochrome c reductase and cytochrome b559 were purified from the membrane fraction of phorbol myristate acetate-stimulated porcine polymorphonuclear leukocytes. The highly purified reductase oxidized NADPH and generated superoxide when combined with partially purified cytochrome b559 in the presence of phosphatidylcholine. In the same system, but under the anaerobic condition, the reductase was found to reduce cytochrome b559.  相似文献   

5.
Cytochrome b558 of pig blood neutrophils was purified from the membranes of resting cells to examine its ability to reconstitute superoxide (O2-)-forming NADPH oxidase activity in a cell-free assay system containing cytosol and fatty acid. The membrane-associated cytochrome b558 was solubilized with a detergent, n-heptyl beta-thioglucoside, and purified by DEAE-Sepharose, heparin-Sepharose, and Mono Q column chromatography. The final preparation of cytochrome containing 11.5 nmol of protoheme/mg of protein gave bands of the large and small subunits on immunoblotted gel. The cell-free system with the purified cytochrome alone as a membrane component showed little O2(-)-generating activity in the absence of exogenous FAD. However, the system showed high O2(-)-generating activity of 31.8 mol/s/mol of cytochrome b558 (52.5% of the original O2(-)-generating activity of the solubilized membranes) in the presence of a nitro blue tetrazolium (NBT) reductase fraction that was separated from the cytochrome b fraction by heparin-Sepharose chromatography. Heat treatment of the NBT reductase fraction resulted in loss of the O2(-)-generating activity in the reconstituted system. The O2(-)-forming activity of the reconstituted system was markedly decreased by removal of FAD from the NBT reductase fraction and was restored by readdition of FAD to the FAD-depleted reductase. The reconstituted system containing purified cytochrome b558 plus the NBT reductase showed approximately 100 times higher O2(-)-generating activity than a system containing rabbit liver NADPH-cytochrome P-450 reductase instead. These results suggest that both the FAD-dependent NBT reductase and cytochrome b558 are required as membrane redox components for O2(-)-forming NADPH oxidase activity. The present data are discussed in comparison with previously reported results on reconstituted systems containing added free FAD.  相似文献   

6.
T R Green  D E Wu 《FEBS letters》1985,179(1):82-86
At approximately equimolar concentrations (approximately 70 microM), and in the presence of excess catalase and superoxide dismutase, DCIP, ferricytochrome c and ferricyanide abstracted 21, 6 and 61%, respectively, of the electron equivalents given up by NADPH to the NADPH-O2 oxidoreductase complex derived from phorbol myristate acetate-stimulated human neutrophils. With a 10-fold increase in ferricyanide, all of the electron equivalents given up by NADPH to the oxidoreductase complex were shunted to ferricyanide concomitant with complete inhibition of NADPH-dependent O2 consumption. These results substantiate the existence of intrinsic diaphorase activity associated with the superoxide generating NADPH-O2 oxidoreductase of human neutrophils.  相似文献   

7.
Studies were performed to examine the lateral organization of the NADPH oxidase system in the plasma membrane of human neutrophils. Analysis of the subcellular fractionation of human neutrophils by isopycnic sedimentation of cavitated cell lysates suggested that there may be more than one population of plasma membrane vesicles formed upon cell disruption. One population (30-32% sucrose) contained surface accessible wheat germ agglutinin binding sites, alkaline phosphatase activity, and cytochrome b. Another population (34-36% sucrose) contained membrane-bound flavin and, when the cells were prestimulated with phorbol myristate acetate (PMA), NADPH-dependent superoxide generating activity. Approximately 25% of the neutrophil cytochrome b cosedimented with the heavy population, confirming our previous hypothesis (Parkos et al. (1985) J. Biol. Chem. 260, 6541-6547) that only a fraction of the total cellular cytochrome b is involved in superoxide production. The heavy plasma membrane fraction was also enriched in membrane associated actin and fodrin as detected by Western blot analysis. After extraction of the plasma membrane vesicles with detergent cocktails, the majority of superoxide generating activity remained associated with the detergent insoluble pellet. Western blot analysis demonstrated that the pellets were also enriched in actin. Further analysis of these pellets using rate-zonal detergent-containing sucrose density gradients indicated that the superoxide generating complex had an approximate sedimentation coefficient of 80 S, suggesting that the neutrophil superoxide generating system may form a complex on the plasma membrane which is associated with or somehow organized by the membrane skeletal matrix. This organization may be of functional relevance not only to the actual production of superoxide, but also to the targeting of microbicidal oxidants.  相似文献   

8.
Phagocytic leukocytes contain an activatable NADPH:O2 oxidoreductase. Components of this enzyme system include cytochrome b558, and three soluble oxidase components (SOC I, SOC II, and SOC III) found in the cytosol of resting cells. Previously, we found that SOC II copurifies with, and is probably identical to, a 47-kDa substrate of protein kinase C. In the present study we investigated the change in location of several of these oxidase components after activation of intact neutrophils with phorbol myristate acetate (PMA) and separation of subcellular fraction on sucrose density gradients. On Western blots with fractions of resting cells, the alpha subunit of cytochrome b558 was detected with a monoclonal antibody as a doublet of Mr 22,000 and 24,000 in the specific granules and as a single band of Mr 24,000 in the plasma membrane. PMA induced an increase of cytochrome b558 in the plasma membrane, including the Mr 22,000 band. PMA also induced translocation of the 47-kDa protein from the cytosol to the membrane fraction, as revealed by in vitro phosphorylation experiments. When NADPH oxidase activity was determined in a cell-free system in the presence of sodium dodecyl sulfate and GTP with plasma membranes from resting cells, cytosol from PMA-treated cells was deficient compared with cytosol from resting cells. This deficiency could be partially restored by the addition of SOC I. Concomitantly, SOC I activity appeared in the plasma membranes of PMA-treated cells. These studies support the hypothesis that PMA stimulation of neutrophils results in assembly of oxidase components from the cytosol and the specific granules in the plasma membrane with subsequent expression of NADPH oxidase activity.  相似文献   

9.
The membrane fraction of guinea pig polymorphonuclear leukocytes stimulated with phorbol myristate acetate exhibits the respiratory burst NADPH oxidase activity. This activity is markedly unstable at 37 degrees C, disappearing with a half-life of 11.0 min. When the membrane fraction was pretreated with 0.1% glutaraldehyde, the NADPH oxidase was found to become more stable; its half-life increased about sixfold without any enhancement of the initial activity. The glutaraldehyde treatment of the membrane fraction also protected the NADPH oxidase against inactivation with 0.1-0.2% Triton X-100. These stabilizing effects of glutaraldehyde on the NADPH oxidase seem to be due to its protein cross-linking ability, since its monovalent analogue, butyraldehyde, did not show any effect on the NADPH oxidase activity. In fact, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that glutaraldehyde cross-linked many proteins constituting the membrane.  相似文献   

10.
The 2,6-dichlorophenolindophenol (DCIP)-reducing activity of the phagocytosis-associated NADPH oxidase was investigated using homogenates and a membrane fraction (F2) of elicited guinea pig peritoneal macrophages stimulated by phorbol myristate acetate. Essentially all of the stimulation-specific DCIP reduction under aerobic conditions could be inhibited when high concentrations of superoxide dismutase (SOD), about 10 times those usually used to inhibit the superoxide (O-2)-mediated cytochrome c reduction, were used. SOD inhibited the DCIP reduction by chemically generated O2- in the same manner as the stimulation-specific DCIP reduction by the macrophage F2, and the concentration of SOD necessary for 50% inhibition was about 10 times that for the reduction of cytochrome c. Under anaerobic conditions, however, the NADPH oxidase could reduce DCIP, though the rate was slow because we could not use a sufficiently high DCIP concentration. The observations indicate that the NADPH oxidase preferentially reduces oxygen under aerobic conditions, though the oxidase can reduce DCIP in the anaerobic state.  相似文献   

11.
Resolution of inflammation requires clearance of activated neutrophils by phagocytes in a manner that protects adjacent tissues from injury. Mechanisms governing apoptosis and clearance of activated neutrophils from inflamed areas are still poorly understood. We used dimethylsulfoxide-differentiated HL-60 cells showing inducible oxidase activity to study NADPH oxidase-induced apoptosis pathways typical of neutrophils. Activation of the NADPH oxidase by phorbol myristate acetate caused oxidative stress as shown by production of superoxide and hydrogen peroxide, depletion of intracellular glutathione, and peroxidation of all three major classes of membrane phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. In addition, phorbol myristate acetate stimulation of the NADPH oxidase caused apoptosis, as evidenced by apoptosis-specific phosphatidylserine externalization, increased caspase-3 activity, chromatin condensation, and nuclear fragmentation. Furthermore, phorbol myristate acetate stimulation of the NADPH oxidase caused recognition and ingestion of dimethylsulfoxide-differentiated HL-60 cells by J774A.1 macrophages. To reveal the apoptosis-related component of oxidative stress in the phorbol myristate acetate-induced response, we pretreated cells with a pancaspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk), and found that it caused partial inhibition of hydrogen peroxide formation as well as selective protection of only phosphatidylserine, whereas more abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, were oxidized to the same extent in the absence or presence of z-VAD-fmk. In contrast, inhibitors of NADPH oxidase activity, diphenylene iodonium and staurosporine, as well as antioxidant enzymes, superoxide dismutase/catalase, completely protected all phospholipids against peroxidation, inhibited expression of apoptotic biomarkers and externalization of phosphatidylserine, and reduced phagocytosis of differentiated HL-60 cells by J774A.1 macrophages. Similarly, zymosan-induced activation of the NADPH oxidase resulted in the production of superoxide and oxidation of different classes of phospholipids of which only phosphatidylserine was protected by z-VAD-fmk. Accordingly, zymosan caused apoptosis in differentiated HL-60 cells, as evidenced by caspase-3 activation and phosphatidylserine externalization. Finally, zymosan triggered caspase-3 activation and extensive SOD/catalase-inhibitable phosphatidylserine exposure in human neutrophils. Overall, our results indicate that NADPH oxidase-induced oxidative stress in neutrophil-like cells triggers apoptosis and subsequent recognition and removal of these cells through pathways dependent on oxidation and externalization of phosphatidylserine.  相似文献   

12.
The complex between ferredoxin-NADP+ oxidoreductase and its proposed membrane-binding protein (Vallejos, R. H., Ceccarelli, E., and Chan, R. (1984) J. Biol. Chem. 259, 8048-8051) was isolated from spinach thylakoids and compared with isolated cytochrome b/f complex containing associated ferredoxin NADP+ oxidoreductase (Clark, R. D., and Hind, G. (1983) J. Biol. Chem. 258, 10348-10354). There was no immunological cross-reactivity between the 17.5-kDa binding protein and an antiserum raised against the 17-kDa polypeptide of the cytochrome complex. Association of ferredoxin-NADP+ oxidoreductase with the binding protein or with the thylakoid membrane gave an allotopic shift in the pH profile of diaphorase activity, as compared to the free enzyme. This effect was not seen in enzyme associated with the cytochrome b/f complex. Identification of the 17.5-kDa binding protein as the 17-kDa component of the cytochrome b/f complex is ruled out by these results.  相似文献   

13.
The human HL-60 myeloid leukaemia cell line developed, during maturational changes induced by dimethyl sulphoxide, an enhanced capacity for phorbol myristate acetate- stimulated oxidative activity and acquired a cytochrome b. Titration of the absorbance at 559 nm at potentials of-190 to -370 mV indicated that this cytochrome had a very low potential, differentiating it from mitochondrial and endoplasmic reticulum cytochromes and identifying it as the cytochrome b(-245) that has been recently found in other phagocytic cells. Subcellular fractionation studies of mature HL-60 cells showed that cytochrome b had a dual distribution within the cell. The lighter peak of activity was associated with the plasma membrane markers, adenylate cyclase and receptors for the N- formal-L-methionyl-L-leucyl-L-phenylalanine (f-Met-Leu-Phe) peptide. The denser components localized with the mitochondria but were distinct from mitochondrial cytochromes because whereas the activity of cytochrome c oxidase fell during HL-60 cell maturation, that of this cytochrome b was markedly increased. Concentrations of myeloperoxidase were unrelated to activity of the oxidase system and decreased as the cell matured. The increase in the concentrations of cytochrome b with cellular maturation parallelled the increase in the stimulated nonmitochondrial respiratory activity of these cells. The turnover of the hexose monophosphate shunt of immature cells was increased by the oxidising agents, methylene blue and tert-butylhydroperoxide, indicating that these immature cells have stimulated nonmitochondrial respiratory activity by maturing HL-60 cells is associated with, and is probably dependent upon, the acquisition by these cells of the cytochrome b(-245) oxidase system.  相似文献   

14.
We investigated the inter-relationships of superoxide (O2-) release, membrane depolarization and an increase in cytoplasmic free Ca2+, [Ca2+]i, in human granulocytes stimulated by various agonists. When concanavalin A or the Ca2+ ionophore ionomycin was used as stimulus, an increase in [Ca2+]i clearly preceded the onset of membrane depolarization, which was followed by O2- release. On the other hand, when N-formylmethionylleucylphenylalanine or wheat-germ agglutinin was used as stimulus, no demonstrable lag was seen in any of the responses. O2- release and membrane depolarization stimulated by all these agonists were markedly potentiated in parallel by pretreatment of cells with a low concentration of phorbol myristate acetate (0.25 ng/ml), whereas an increase in [Ca2+]i was not affected or minimally potentiated. The lag time between addition of the stimulus (concanavalin A or ionomycin) and onset of membrane depolarization or O2- release was significantly reduced by pretreatment of cells with phorbol myristate acetate, whereas the lag time between addition of concanavalin A and onset of the increase in [Ca2+]i was not affected. The dose-response curves for triggering of O2- release and membrane depolarization by each of receptor-mediated agonists in phorbol myristate acetate-pretreated or control cells were identical. These findings suggest that; (a) an increase in [Ca2+]i stimulates membrane depolarization indirectly; (b) a low concentration of phorbol myristate acetate potentiates membrane depolarization and O2- release by acting primarily at the post-receptor level, in particular, at the level distal to an increase in [Ca2+]i, but not by augmenting an increase in [Ca2+]i; and (c) the system provoking membrane depolarization and the system activating NADPH oxidase share a common pathway, which may be susceptible to a low concentration of phorbol myristate acetate.  相似文献   

15.
Phorbol myristate acetate stimulation of lymphocyte guanylate cyclase   总被引:1,自引:0,他引:1  
Human lymphocyte guanylate cyclase activities are increased in a dose-dependent fashion by incubation of intact cells with phorbol myristate acetate, a tumor promoter and lymphocyte mitogen. Increased activity is detectable after 1 minute, and peak membrane-bound and soluble forms of guanylate cyclase occur after 10- and 30-minute exposure to phorbol myristate acetate, respectively. The soluble form is stimulated much more than the membrane form. Enzyme activities measured in the presence of either Ca2+, Mg2+, or Mn2+ are elevated to similar degrees. Comparisons of phorbol and a series of its diesters revealed a good correlation between the capacities for guanylate cyclase stimulation, lymphocyte mitogenesis, and tumor promotion.  相似文献   

16.
NADPH-dependent O2- generating oxidoreductase activity recovered from cell lysates of phorbol myristate acetate-stimulated human neutrophils exhibits dependence on Ca+2 and Mg+2 for full expression of its catalytic activity. O2- generating activity was completely abolished by exposure of the oxidoreductase to EDTA, then reconstituted by exposure of the enzyme to Ca+2 and Mg+2 in excess of the EDTA concentration used to block catalytic activity. The oxidoreductase responded maximally to either 0.25 mM Ca+2 or 0.80 mM Mg+2. The pH optimum of the oxidoreductase exposed to Ca+2 and Mg+2 is between pH 7.0 and 7.6. The molar ratio of NADPH oxidation to O2- production determined at pH 7.6 in the presence of Ca+2 and Mg+2 is 0.49, indicating 1 mole of NADPH oxidized per 2 moles of O2- formed. Particulate fractions recovered from cell lysates of resting neutrophils exhibited no oxidoreductase activity under the same conditions.  相似文献   

17.
The superoxide (O2-) forming NADPH oxidase complex of resting phagocytes can be activated in a cell-free system by certain anionic amphiphiles, such as sodium dodecyl sulfate (SDS). For O2- production to occur, the participation of both membrane-associated and cytosol-derived components is required. The purpose of this investigation was to isolate and characterize the membrane component of NADPH oxidase. For this purpose, guinea pig macrophage membranes were extracted with 1 M NaCl, solubilized by 40 mM octyl glucoside, and subjected to a purification sequence consisting of absorption with DEAE-Sepharose, affinity chromatography on heparin-agarose, and chromatography on hydroxylapatite. At each purification step, fractions were assayed for their ability to support SDS-elicited, cytosol-dependent O2- production, following incorporation in liposomes of phosphatidylcholine. We found that membrane oxidase activity copurified strictly with cytochrome b559. Peak hydroxylapatite fractions exhibited specific O2(-)-forming activity in the range of 81-115 mumol of O2-/mg protein/min and a specific cytochrome b559 content of 7-14 nmol of cytochrome b559/mg protein. SDS-polyacrylamide gel electrophoresis analysis of the peak oxidase activity fractions, derived by hydroxylapatite chromatography, revealed essentially two bands that were identified as the beta (54-60 kDa) and alpha (21/22 kDa) subunits of guinea pig cytochrome b559. The relation of the two polypeptides to cytochrome b559 was established by correlation with a spectral signal characteristic of cytochrome b559, immunoblotting with antibodies against defined human cytochrome b559 beta and alpha chain peptides, cross-linking studies, and deglycosylation experiments. Hydroxylapatite-purified membrane oxidase preparations did not contain FAD and were free of cytochrome c reductase activity. Purified membrane oxidase preparations were also capable of cooperating with purified cytosolic components in SDS-elicited cell-free O2- production. We conclude that the membrane-associated component of the O2- generating NADPH oxidase is identical to cytochrome b559.  相似文献   

18.
Cytochrome b558, which is considered to be an essential component of the phagocytic superoxide (O2-)-generating system, was highly purified from porcine neutrophils. The isolated cytochrome was resolved into two polypeptides with molecular masses of 60-90 and 19 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. For enzymatic reduction of purified cytochrome b558, we utilized hepatic NADPH-cytochrome P450 reductase purified from rat liver microsomes. More than 80% of the cytochrome was reduced by incubation with the reductase and NADPH under the anaerobic condition, and was quickly reoxidized by the air. As indicated by measurement of oxygen consumption, the purified cytochrome catalytically reduced oxygen at a rate equal to approximately 30% of the activity of the phorbol myristate acetate-activated cells on the basis of cytochrome b558 content. Electron paramagnetic resonance study with a spin trapping agent 5, 5-dimethyl-1-pyrroline-1-oxide demonstrated that O2- is the exclusive primary product in the reduction of oxygen by the cytochrome. This gives direct evidence that cytochrome b558 functions as the terminal oxidizing enzyme in the O2- -generating system of neutrophils. This also establishes a new functional class of heme proteins that catalyzes one-electron reduction of molecular oxygen.  相似文献   

19.
The oxidation-reduction midpoint potential of the cytochrome b found in the plasma membrane of human neutrophils has been determined at pH 7.0 (Em,7.0) from measurements of absorption spectra at fixed potentials. In both unstimulated and phorbol myristate acetate-stimulated cells Em,7.0 was -245 mV. Changes in pH affected the Em of the cytochrome b, with a slope of approx. 25 mV/pH unit change. The Em,7.0 of the haem group(s) of the membrane-bound myeloperoxidase of human neutrophils was found to be +34 mV. The plasma membranes contained no detectable ubiquinone, and no iron-sulphur compounds were detected by e.p.r. spectroscopy at 5-20 K. No flavins were detected by e.p.r. spectroscopy. The cytochrome b-245 was not reduced by added NADH or NADPH. Dithionite-reduced cytochrome b-245 formed a complex with CO, supplied as a saturated solution, which was dissociated with 26 microseconds illumination from a xenon flash lamp, and the recombination with CO had a half-time of approx. 6 ms. Partly (80%) reduced cytochrome b-245 was oxidized by added air-saturated buffer with a half-time faster than 1 s at 20 degrees C, a resolution limited by mixing time. These results are compatible with cytochrome b-245 acting as an oxidase.  相似文献   

20.
An NADPH-dependent O2.- -generating oxidase was solubilized from phorbol 12-myristate 13-acetate-activated pig neutrophils by using a mixture of detergents. Recovery of oxidase was approx. 40%. The extract contained cytochrome b-245 (331 pmol/mg of protein) and FAD (421 pmol/mg of protein); approx. 30% of each was reduced within 60s when NADPH was added to anaerobic incubations. Three different additives, quinacrine, p-chloromercuribenzoate and cetyltrimethylammonium bromide, strongly inhibited O2.- generation; they also inhibited the reduction by NADPH of cytochrome b at the same low concentrations. In the presence of p-chloromercuribenzoate cytochrome b reduction was strongly inhibited and flavin reduction was less inhibited. A detergent extract prepared from non-stimulated neutrophils also contained flavin and cytochrome b, but its rate of O2.- production was less than 1% of that from activated cells; its initial rate of cytochrome b and flavin reduction was low, although the state of reduction at equilibrium was similar to that of extracts of activated cells. Even in the non-activated cell extract the reduction of flavin and cytochrome was made fast and complete when Methyl Viologen was added to the anaerobic incubations. The oxidase was temperature-sensitive, with a sharp maximum at 25 degrees C; temperatures above this caused loss of O2.- generation, and this coincided with loss of the characteristic cytochrome b spectrum, indicate of denaturation of the cytochrome. The cytochrome b formed a complex with butyl isocyanide (close to 100% binding at 10mM); butyl isocyanide also inhibited the oxidase activity of stimulated whole neutrophils (22.5% inhibition at 10mM). Photoreduced FMN stimulated O2 uptake by the oxidase. The results support a scheme of electron transport within the oxidase complex involving NADPH, FAD, cytochrome b-245 and O2 in that sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号