首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Occupancy of the T cell antigen receptor triggers a complex set of events that culminate in cellular activation. It is clear that tyrosine kinases play important roles in this process. The zeta subunit of the T cell antigen receptor is a 16-kDa transmembrane structure that exists primarily as a disulfide-linked homodimer. On receptor activation, a subset of zeta molecules undergo tyrosine phosphorylation. To evaluate this process and the role of zeta phosphorylation in T cell activation, site-specific mutagenesis of the intracytoplasmic tyrosines of zeta has been carried out. Analysis of cells expressing these mutant zeta subunits demonstrated that multiple tyrosines underwent phosphorylation in response to receptor engagement, and that the four most carboxyl tyrosines were most crucial to this process. Despite abnormalities in phosphorylation induced by the mutations, lymphokine production in these transfectants was unaffected. Hence, although zeta is a prominent substrate for a receptor-activated tyrosine kinase, neither the mutation of individual tyrosines nor the alteration of the phosphorylation state of the molecule substantively affected the coupling of T cell receptor activation to lymphokine production. These findings raise questions regarding the role of zeta phosphorylation in T cell activation.  相似文献   

2.
The ryanodine receptor of Jurkat T lymphocytes was phosphorylated on tyrosine residues upon stimulation of the cells via the T cell receptor/CD3 complex. The tyrosine phosphorylation was transient, reaching a maximum at 2 min, and rapidly declined thereafter. In co-immunoprecipitates of the ryanodine receptor, the tyrosine kinases p56(lck) and p59(fyn) were detected. However, only p59(fyn) associated with the ryanodine receptor in a stimulation-dependent fashion. Both tyrosine kinases, recombinantly expressed as glutathione S-transferase (GST) fusion proteins, phosphorylated the immunoprecipitated ryanodine receptor in vitro. In permeabilized Jurkat T cells, GST-p59(fyn), but not GST-p56(lck), GST-Grb2, or GST alone, significantly and concentration-dependently enhanced Ca(2+) release by cyclic ADP-ribose. The tyrosine kinase inhibitor PP2 specifically blocked the effect of GST-p59(fyn). This indicates that intracellular Ca(2+) release via ryanodine receptors may be modulated by tyrosine phosphorylation during T cell activation.  相似文献   

3.
4.
How the T cell antigen receptor (TCR) discriminates between molecularly related peptide/Major Histocompatibility Complex (pMHC) ligands and converts this information into different possible signaling outcomes is still not understood. One current model proposes that strong pMHC ligands, but not weak ones, induce a conformational change in the TCR. Evidence supporting this comes from a pull-down assay that detects ligand-induced binding of the TCR to the N-terminal SH3 domain of the adapter protein Nck, and also from studies with a neoepitope-specific antibody. Both methods rely on the exposure of a polyproline sequence in the CD3epsilon subunit of the TCR, and neither indicates whether the conformational change is transmitted to other CD3 subunits. Using a protease-sensitivity assay, we now show that the cytoplasmic tails of CD3epsilon and CD3zeta subunits become fully protected from degradation upon TCR triggering. These results suggest that the TCR conformational change is transmitted to the tails of CD3epsilon and CD3zeta, and perhaps all CD3 subunits. Furthermore, the resistance to protease digestion suggests that CD3 cytoplasmic tails adopt a compact structure in the triggered TCR. These results are consistent with a model in which transduction of the conformational change induced upon TCR triggering promotes condensation and shielding of the CD3 cytoplasmic tails.  相似文献   

5.
Activation of peripheral blood T cells, and the leukemic T cell line Jurkat, as measured by mobilization of intracellular calcium, by an anti-TCR antibody is blocked by mAb (T191) to the leukocyte common Ag (CD45). T191 also blocked down-regulation of the CD3-TCR complex induced by an anti-CD3 mAb. Vanadate, a phosphotyrosine phosphatase inhibitor, partially blocks the effect of T191 and restored mobilization of intracellular calcium. Assays of the immunoprecipitates of T191 and CD45 from both Jurkat-BM1 and peripheral T cells showed that the immune complexes had intrinsic phosphatase activity. A parallel immunoprecipitate using a mAb (4-10) against HLA class I showed no such activity. Further analysis of the T191 immunocomplex revealed activity against phosphotyrosine, p-nitrophenylphosphate, and [32P-poly-glu-tyr, but not against phosphoserine. Phosphatase activity was inhibited by Vanadate, but not by Zn2+ or F-. These results show that CD45 is a phosphotyrosine phosphatase, and strongly suggest that tyrosine phosphorylation/dephosphorylation is critically involved in activation of T cells through the TCR-CD3 complex.  相似文献   

6.
T cells infiltrating (T-TIL) B cell non-Hodgkin's lymphomas (NHL) are thought to represent a local host response to the tumor. However, tumor progression in the presence of this T cell infiltrate suggests that the T-TIL may be functionally impaired. To address this issue we determined whether response to stimulation of T-TIL from 25 patients with NHL through the T cell receptor (TCR/CD3) and the interleukin-2 (IL-2) receptor (IL-2R) was intact, since activation of these receptors is important for proliferation and cytokine production. Our results demonstrate defects in response to stimulation via TCR/CD3 and the IL-2R in T-TIL cells from patients with NHL that were not observed with T cells from the peripheral blood. T-TIL showed minimal proliferation to anti-CD3 and only modest proliferation to IL-2 alone or when combined with anti-CD3. Moreover, cytokine production in T-TIL was impaired since stimulation through the TCR/CD3 complex did not induce mRNA for interferon (IFN), IL-2, IL-4 or IL-10. The functional unresponsiveness of these cells may be linked to altered signalling through the TCR/CD3 since an abnormal tyrosine phosphorylation pattern was detected in T-TIL after stimulation with anti-CD3.  相似文献   

7.
DM functions as a peptide editor for MHC class II-bound peptides. We examined the hypothesis that DM peptide editing plays a key role in focusing the in vivo CD4 T cell responses against complex pathogens and protein Ags to only one, or at most a few, immunodominant peptides. Most CD4 T cells elicited in the wild-type BALB/c (H-2d) mice infected with Leishmania major predominantly recognize a single epitope 158-173 within Leishmania homologue of activated receptor for c-kinase (LACK), as is the case when these mice are immunized with rLACK. Using DM-deficient (DM-/-) H-2d mice, we now show that in the absence of DM, the in vivo CD4 T cell responses to rLACK are skewed away from the immunodominant epitopes and are diversified to include two novel epitopes (LACK 33-48 and 261-276). DM-/- B10.BR (H-2k) mice showed similar results. These results constitute the first demonstration of the role of DM peptide editing in sculpting the specificity and immunodominance in in vivo CD4 T cell responses.  相似文献   

8.
The zeta subunit of the T cell receptor (TCR) is a prominent substrate for a TCR-activated tyrosine kinase. Tyrosine phosphorylation of the zeta subunit in response to antibody-mediated receptor cross-linking was synergized in permeabilized T cells by either of two non-hydrolyzable GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) or guanosine 5'-[beta, gamma-imido]triphosphate Gpp(NH)p. ATP analogues did not significantly affect antibody-induced tyrosine phosphorylation. Unlike the GTP analogues, the GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP beta S) did not enhance phosphorylation of zeta. The effect induced by the GTP analogues required TCR occupancy and was independent of protein kinase C. Taken together these observations implicate a GTP-binding protein in the modulation of TCR-induced tyrosine phosphorylation.  相似文献   

9.
Engagement of the T cell receptor (TCR) by antigen or anti-CD3 antibody results in a cycle of internalization and re-expression of the CD3zeta. Following internalization, CD3zeta is degraded and replaced by newly synthesized CD3zeta on the cell surface. Here, we provide evidence that availability of the amino acid L-arginine modulates the cycle of internalization and re-expression of CD3zeta and cause T cell dysfunction. T cells stimulated and cultured in presence of L-arginine, undergo the normal cycle of internalization and re-expression of CD3zeta. In contrast, T cells stimulated and cultured in absence of L-arginine, present a sustained down-regulation of CD3zeta preventing the normal expression of the TCR, exhibit a decreased proliferation, and a significantly diminished production of IFNgamma, IL5, and IL10, but not IL2. The replenishment of L-arginine recovers the expression of CD3zeta. The decreased expression of CD3zeta is not caused by a decreased CD3zeta mRNA, an increased CD3zeta degradation or T cell apoptosis.  相似文献   

10.
NKT cells express both NK cell-associated markers and TCR. Classically, these NK1.1+TCRalphabeta+ cells have been described as being either CD4+CD8- or CD4-CD8-. Most NKT cells interact with the nonclassical MHC class I molecule CD1 through a largely invariant Valpha14-Jalpha281 TCR chain in conjunction with either a Vbeta2, -7, or -8 TCR chain. In the present study, we describe the presence of significant numbers of NK1.1+TCRalphabeta+ cells within lymphokine-activated killer cell cultures from wild-type C57BL/6, CD1d1-/-, and Jalpha281-/- mice that lack classical NKT cells. Unlike classical NKT cells, 50-60% of these NK1.1+TCRalphabeta+ cells express CD8 and have a diverse TCR Vbeta repertoire. Purified NK1.1-CD8alpha+ T cells from the spleens of B6 mice, upon stimulation with IL-2, IL-4, or IL-15 in vitro, rapidly acquire surface expression of NK1.1. Many NK1.1+CD8+ T cells had also acquired expression of Ly-49 receptors and other NK cell-associated molecules. The acquisition of NK1.1 expression on CD8+ T cells was a particular property of the IL-2Rbeta+ subpopulation of the CD8+ T cells. Efficient NK1.1 expression on CD8+ T cells required Lck but not Fyn. The induction of NK1.1 on CD8+ T cells was not just an in vitro phenomenon as we observed a 5-fold increase of NK1.1+CD8+ T cells in the lungs of influenza virus-infected mice. These data suggest that CD8+ T cells can acquire NK1.1 and other NK cell-associated molecules upon appropriate stimulation in vitro and in vivo.  相似文献   

11.
Foxp3 functions as a lineage specification factor for the development of naturally occurring thymus-derived CD4+CD25+ regulatory T (Treg) cells. Recent evidence suggests that naive Foxp3-CD4+CD25- T cells can be converted in the periphery into Foxp3+ Treg cells. In this study, we have identified the G protein-coupled receptor (GPR)83 to be selectively up-regulated by CD4+CD25+ Treg cells of both murine and human origin in contrast to naive CD4+CD25- or recently activated T cells. Furthermore, GPR83 was induced upon overexpression of Foxp3 in naive CD4+CD25- T cells. Transduction of naive CD4+CD25- T cells with GPR83-encoding retroviruses did not confer in vitro suppressive activity. Nevertheless, GPR83-transduced T cells were able to inhibit the effector phase of a severe contact hypersensitivity reaction of the skin, indicating that GPR83 itself or GPR83-mediated signals conferred suppressive activity to conventional CD4+ T cells in vivo. Most strikingly, this in vivo acquisition of suppressive activity was associated with the induction of Foxp3 expression in GPR83-transduced CD4+ T cells under inflammatory conditions. Our results suggest that GPR83 might be critically involved in the peripheral generation of Foxp3+ Treg cells in vivo.  相似文献   

12.
The signals required for activation and the differentiation of human triple negative postnatal thymocytes were studied in vitro. Highly purified populations of CD4-, CD8-, CD3- (triple negative) thymocytes were isolated by combined panning and preparative cell sorting and the ability of triple negative thymocytes to proliferate in response to various cytokines determined. Maximal triple negative proliferation was obtained using a mitogenic combination of CD2 antibodies and either rIL-2 or the phorbol ester, PMA. Long term growth (2 to 6 wk) of postnatal triple negative thymocytes was best achieved using CD2 antibodies and rIL-2. After in vitro culture with CD2 antibodies and rIL-2, triple negative thymocytes gave rise to TCR-delta+ cells beginning on day 2 of culture (approximately 15% CD3/TCR-delta+) reaching maximum (approximately 60% CD3/TCR-delta+) on day 7 with stable number of TCR-delta+ cells observed in vitro for up to 6 wk. Analysis of 30 clones of human postnatal triple negative thymocytes demonstrated 9 of 30 (30%) were TCR-delta+, beta F1-, essentially ruling out overgrowth of the triple negative population over time by a minor pool of contaminating TCR-delta+ cells. Thus, these studies have defined an in vitro culture system for human postnatal T cell precursors and demonstrated that precursors of human TCR-gamma delta+ T cells reside in the triple negative thymocyte pool.  相似文献   

13.
T lymphocytes can be activated via the T cell receptor (TCR) or by triggering through a number of other cell surface structures, including the CD38 co-receptor molecule. Here, we show that in TCR+ T cells that express a CD3-zeta lacking the cytoplasmic domain, cross-linking with CD38- or CD3-specific monoclonal antibodies induces tyrosine phosphorylation of CD3-epsilon, zeta-associated protein-70, linker for activation of T cells, and Shc. Moreover, in these cells, anti-CD38 or anti-CD3 stimulation leads to protein kinase B/Akt and Erk activation, suggesting that the CD3-zeta-immunoreceptor tyrosine-based activation motifs are not required for CD38 signaling in T cells. Interestingly, in unstimulated T cells, lipid rafts are highly enriched in CD38, including the T cells lacking the cytoplasmic tail of CD3-zeta. Moreover, CD38 clustering by extensive cross-linking with an anti-CD38 monoclonal antibody and a secondary antibody leads to an increased resistance of CD38 to detergent solubilization, suggesting that CD38 is constitutively associated with membrane rafts. Consistent with this, cholesterol depletion with methyl-beta-cyclodextrin substantially reduces CD38-mediated Akt activation while enhancing CD38-mediated Erk activation. CD38/raft association may improve the signaling capabilities of CD38 via formation of protein/lipid domains to which signaling-competent molecules, such as immunoreceptor tyrosine-based activation motif-bearing CD3 molecules and protein-tyrosine kinases, are recruited.  相似文献   

14.
Recombinant immunoreceptors with specificity for the carcinoembryonic Ag (CEA) can redirect grafted T cells to a MHC/Ag-independent antitumor response. To analyze receptor-mediated cellular activation in the context of CD28 costimulation, we generated: 1) CEA+ colorectal tumor cells that express simultaneously B7-1 and B7-2, and 2) CEA-specific immunoreceptors that harbor intracellularly the signaling moities either of CD28 (BW431/26-scFv-Fc-CD28), CD3zeta (BW431/26-scFv-Fc-CD3zeta), or FcepsilonRIgamma (BW431/26-scFv-Fc-gamma). By retroviral gene transfer, we grafted activated T cells from the peripheral blood with these immunoreceptors. T cells that express the FcepsilonRIgamma or CD3zeta signaling receptor lysed specifically CEA+ tumor cells and secreted high amounts of IFN-gamma upon receptor cross-linking, whereas anti-CEA-CD28 receptor-grafted T cells did not, indicating that CD28 signaling alone is not sufficient for efficient T cell activation. CD28 costimulation did not affect cytolysis by T cells equipped with gamma- or zeta-signaling receptors, but enhanced both IFN-gamma secretion and proliferation. CD28 costimulation, however, was required for efficient IL-2 secretion of anti-CEA-gamma receptor-grafted T cells. Both purified CD4+ and CD8+ T cells grafted with immunoreceptors required CD28 costimulation for complete T cell activation. We integrated both CD28 and CD3zeta signaling domains into one combined immunoreceptor molecule (BW431/26-scFv-Fc-CD28/CD3zeta) with dual signaling properties. T cells grafted with the combined CD28/CD3zeta signaling receptor secreted high amounts of IL-2 upon Ag binding without exogenous B7/CD28 costimulation, demonstrating that both MHC-independent cellular activation and CD28 costimulation for complete T cell activation can be delivered by one recombinant receptor molecule.  相似文献   

15.
Antiphosphotyrosine immunoblots were used to characterize tyrosine phosphorylated proteins after stimulation of the human TCR. Increased tyrosine phosphorylation was evident on at least 12 substrates within 2 min after ligation of the TCR with mAb. Analysis of the time course for increased tyrosine phosphorylation revealed distinct patterns. Increased phosphorylation of 135-kDa and 100-kDa substrates was evident within 5 s, whereas increased phosphorylation of the TCR-zeta-chain required several minutes after treatment with anti-CD3 mAb. This rapid cellular tyrosine phosphorylation occurred independent of the cell cycle, as it occurred after stimulation of resting T cells, T cell blasts, and the Jurkat T cell leukemia line. When the TCR complex was cross-linked together with the CD4 receptor by heteroconjugate anti-CD3/CD4 mAb, an increased magnitude of tyrosine phosphorylation occurred, although no new substrates could be detected. The increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates was specific in that anti-HLA class I, anti-CD6, anti-CD7, and anti-CD28 antibodies did not cause increased tyrosine phosphorylation. Anti-CD4 stimulation of resting T cells did not cause increased tyrosine phosphorylation of pp100 and pp135, suggesting that the CD4-associated kinase, lck, does not account for the tyrosine phosphorylation observed after TCR stimulation. Similarly, pharmacologic treatment of cells with phorbol ester and calcium ionophore did not cause increased tyrosine phosphorylation of these substrates, indicating that activation of protein kinase C or phospholipase C does not account for these early increases in tyrosine phosphorylation. The time of onset of pp100 phosphorylation, and the magnitude of phosphorylation correlated with the magnitude of calcium mobilization when cells were stimulated with different forms of TCR stimulation. When cells were labeled with [3H]myoinositol and analyzed after stimulation by anti-CD3 mAb, increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates preceded the activation of phospholipase C, as measured by the appearance of inositol 1,4,5-trisphosphate. This occurred in both T cell blasts and in the Jurkat T cell line. Thus, these findings show that increased tyrosine phosphorylation is the earliest yet detected signal observed after ligation of the TCR complex, and furthermore suggest that tyrosine phosphorylation might link the TCR to the phosphatidylinositolbisphosphate hydrolysis signaling pathway.  相似文献   

16.
Some thymocytes, upon activation via the TCR complex in vitro, undergo apoptotic cell death. In this report, we examine the cell death induced in the thymus after administration of anti-CD3 or anti-TCR antibodies. We found that shortly after antibody injection, cortical thymocytes undergo apoptosis as characterized by morphologic changes and DNA fragmentation. Anti-CD3 administration led to depletion of nearly all CD4+CD8+ thymocytes, and approximately 50% of CD4+CD8- thymocytes. This depletion predominantly affected cells bearing low levels of CD3, although some depletion also occurred among cells expressing intermediate and high levels. Administration of an anti-TCR antibody also induced apoptosis, but affected significantly fewer thymocytes than anti-CD3. This effect was probably not due to different binding affinities for the two antibodies, because both antibodies show similar dose response effects in an in vitro model of activation-induced apoptosis. This work demonstrates that findings on activation-induced apoptosis in vitro can be extended to the in vivo situation, and further, that the activation of cortical thymocytes, in situ, results in apoptosis and removal of the activated cells. The possible relationships between this activation-induced cell death in immature thymocytes and the process of negative selection of autoreactive T cells is discussed.  相似文献   

17.
Mature human dendritic cells (mDCs) are the most powerful APCs known today, having the unique ability to induce primary immune responses. One of the best known surface markers for mDCs is the glycoprotein CD83, which is strongly up-regulated during maturation, together with costimulatory molecules such as CD80 and CD86. When CD83 surface expression was inhibited by interference with the messenger RNA export or by infection with certain viruses, DCs showed a dramatically reduced capability to induce T cell proliferation. However, in these cases side effects on other cellular functions cannot be excluded completely. In this study we present an efficient method to specifically influence CD83 surface expression by the use of RNA interference. We used small-interfering RNA targeted against CD83 and carefully evaluated an electroporation protocol for the delivery of the duplex into the cells. Furthermore, we identified freshly prepared immature DCs as the best target for the application of a CD83 knockdown and we were also able to achieve a long lasting silencing effect for this molecule. Finally, we were able to confirm that CD83 functions as an enhancer during the stimulation of T cells, significantly increases DC-mediated T cell proliferation, and goes hand in hand with clear changes in cytokine expression during T cell priming. These results were obtained for the first time without the use of agents that might cause unwanted side effects, such as low m.w. inhibitors or viruses. Therefore, this method presents a suitable way to influence DC biology.  相似文献   

18.
Role of CD3 gamma in T cell receptor assembly   总被引:3,自引:0,他引:3       下载免费PDF全文
The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC), transmembrane (TM), and cytoplasmic (CY) domain of CD3 gamma in assembly and cell surface expression of the complete TCR in human T cells. A computer model indicated that the EC domain of CD3 gamma folds as an Ig domain. Based on this model and on alignment studies, two potential interaction sites were predicted in the EC domain of CD3 gamma. Site-directed mutagenesis demonstrated that these sites play a crucial role in TCR assembly probably by binding to CD3 epsilon. Mutagenesis of N-linked glycosylation sites showed that glycosylation of CD3 gamma is not required for TCR assembly and expression. In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta. Deletion of the entire CY domain of CD3 gamma did not prevent assembly and expression of the TCR. In conclusion, this study demonstrated that specific TCR interaction sites exist in both the EC and TM domain of CD3 gamma. Furthermore, the study indicated that, in contrast to CD3 gamma, glycosylation of CD3 delta is required for TCR assembly and expression.  相似文献   

19.
When T lymphocytes from human blood or lymphoid organs are prepared by the sheep red blood cell (SRBC) rosetting procedure, glycoproteins of the SRBC membrane interact intimately with the CD2 (T11) molecule on the T cell surface. We now show that rosette formation has measurable short- and long-term effects upon the T cells. First, for a period of 24-48 hr after rosetting, the signal transducing and activation functions of the T3/Ti T cell antigen receptor complex is paralyzed for anti-T3-induced calcium mobilization, with a concomitant decrease in proliferative response to mitogens or stimulatory anti-T3 antibodies. Calcium mobilization through the alternate pathway of T cell activation, the T11/CD2 SRBC receptor, was also inhibited by rosetting. Second, rosetting appears to confer a partial stimulatory signal through the T11/CD2 pathway. Thus, 72 hr or more after rosetting, there was increased expression of the T11(3) activation epitope, and rosetted T cells were stimulated to proliferate in the presence of anti-T11(3) antibodies alone. These results provide further details on the effects of SRBC-T cell interactions, with important methodological implications. Moreover, they suggest a hitherto unrecognized down-regulatory effect of engaging the CD2 molecule, and provide further evidence that the T cell receptor is functionally interconnected to the CD2 activation pathway.  相似文献   

20.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号