首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Sequence from the assembly nucleation region of TMV RNA   总被引:1,自引:0,他引:1  
In an effort to isolate RNA sequences containing the assembly nucleation region, uniformly 32P-labeled tobacco mosaic virus RNA was partially digested with pancreatic ribonuclease, and the mixture of fragments was incubated with limited amounts of tobacco mosaic virus protein disks in conditions favorable for reconstitution. The RNA fragments which became encapsidated were purified and sequenced by conventional techniques. The sequence of the first 139 nucleotides of P1, the principal encapsidated fragment, is AGGU- UUGAGAGAGAAGAUUACAAGCGUGAGAGACG- GAGGGCCCAUGGAACUUACAGAAGAAGUUGU- UGAUGAGUUCAUGGAAGAUGUCCCUAUGUCA- AUCAGACUUGCAAAGUUUCGAUCUCGAACCG- GAAAAAAGAGU. Residues 1–110 of P1 overlap the assembly origin isolated and characterized in the accompanying papers by Zimmern 1977 and Zimmern and Butler 1977. Our results, taken in conjunction with the two accompanying papers, define the sequence of much of the nucleation region as well as sequences flanking it on both sides. The features of the P1 sequence which may have a role in the nucleation reaction are discussed in detail in the text.  相似文献   

3.
Specific encapsidation of fragments of TMV RNA.   总被引:1,自引:0,他引:1  
The in vitro reconstitution of tobacco mosaic virus (TMV) is initiated by the binding of a disk of TMV protein to the 'disk recognition site', a region of the RNA chain at or near the 5'-terminus for which the disk has special affinity. In order to gain insight into the recognition process, we have studied the ability of disks to encapsidate short RNA fragments produced by partial pancreatic or T1 RNase digestion of TMV RNA. The disk is capable of dicriminating among such fragments, encapsidating only a few of the many present in the digest. The products of encapsidation are short nucleoprotein rods of the same diameter as TMV and of length proportional to that of the encapsidated RNA fragment. The particles differ from TMV, however, in one significant aspect (apart from their length): they possess rings of RNA-free protein at one or both extremities of the rod. In the case of T1 RNase digestion the principal encapsidated fragments were fragments T1 (105 nucleotides) and a family of smaller fragments containing elements of the same sequence. Partial digestion with pancreatic RNase generated only one major fragment (fragment P1; 150 nucleotides) with affinity for the disk. Fragment T1 has been sequenced and shown to represent a portion of the coat protein cistron. Fragment P1 has been partially sequenced but its function is not yet known. Several lines of evidence indicate that fragment T1 is not the disk recognition site. The portion of the TMV RNA chain from which fragment P1 is derived, on the other hand, is encapsidated early in the reconstitution process; thus fragment P1 may contain the disk recognition site. Fragment T1 and fragment P1 both have purine-rich and cytosine-poor sequences near their termini. In addition, fragment T1, and possibly fragment P1, possess a periodicity of order three in purine residues. It seems likely that one or both of the aforesaid properties are largely responsible for the affinity of these fragments for the disk.  相似文献   

4.
Reconstitution of tobacco mosaic virus from its constituents, the coat protein and RNA, was investigated by means of ultracentrifugation and circular dichroism measurement. Tobacco mosaic virus protein forms a 20S double-layer disc under conditions favorable for tobacco mosaic virus reconstitution. Dibromination of the tyrosine 139 residue of tobacco mosaic virus protein prevents formation of the 20S disc.Acidification of the tobacco mosaic virus protein solution causes 20S discs to polymerize into long helical rods. Changes in the CD spectra of tobacco mosaic virus protein in the near-ultraviolet region suggest that stacking of the aromatic sidechains of amino acid residues stabilizes the helical rod. The dibrominated tobacco mosaic virus protein also has the ability of rod elongation under acidic condition. CD studies reveal that assembly of tobacco mosaic virus particles from its constituents is stabilized by the stacking effect between the base residues of RNA and the aromatic residues of tobacco mosaic virus protein.Cucumber green mottle mosaic virus protein, which acts as a substituent for tobacco mosaic virus protein in tobacco mosaic virus reconstitution, was also investigated.  相似文献   

5.
During assembly of tobacco mosaic virus from pure RNA and 20S capsid protein aggregates under conditions where protein is limiting, partially assembled intermediates of specific sizes accumulate; these were isolated on sucrose density gradients. The earliest intermediate found in substantial quantity sedimented at 56 S and was shown, by measurement of its buoyant density and of the length of the RNA segment protected by the capsid protein from nuclease digestion, to consist of RNA that is 13% encapsidated (corresponding to a rod length of about 39 nm); the next intermediate sediments at 78 S and is 18% encapsidated (corresponding to a rod length of about 54 nm). Studies of the distribution of intermediates at various input ratios of protein/RNA indicated that their accumulation results from decreases in the rate constants for protein binding that are local to specific points in the course of encapsidation. After extensive nuclease digestion, the RNA still associated with the first intermediate was shown to include a portion that is unencapsidated. This segment of the RNA may be a region of stable secondary that confers the nuclease resistance despite the lack of protection by capsid protein. Such RNA secondary structure, if it exists, would also cause the accumulation of intermediates by imposing an energy barrier to subsequent rod elongation.  相似文献   

6.
RNA-protein interactions in the assembly of tobacco mosaic virus.   总被引:4,自引:0,他引:4       下载免费PDF全文
Assembly of tobacco mosaic virus is initiated by the binding of a specific loop of the RNA into the central hole of the disk aggregate of protein subunits. Since the nucleation loop is located about five-sixths along the RNA molecule, subsequent elongation must be bidirectional. We have now measured the rates of elongation in the two directions by determining the lengths of RNA protected from nuclease digestion at different times and using either intact TMV rNA, or RNA with most of the longer tail removed. Comparison of the rates with the protein supplied as either a mixture of disks with A-protein (a mixture of less aggregated states) or just A-protein, shows that different mechanisms and protein aggregates are used for the most rapid growth. When disks are present, they add more rapidly along the longer RNA tail but do not appear to add directly on the shorter tail. In contrast, smaller aggregates (A-protein) can add at both ends of the rod, but do so more slowly. Mechanisms for these processes are discussed. Preliminary results on the binding of the specific hexanucleotide AAGAAG to the disk are given and compared with the known changes on binding nonspecific hexanucleotides or the trinucleotide AAG.  相似文献   

7.
The tobacco mosaic virus (TMV) particle was the first macromolecular structure to be shown to self-assemble in vitro, allowing detailed studies of the mechanism. Nucleation of TMV self-assembly is by the binding of a specific stem-loop of the single-stranded viral RNA into the central hole of a two-ring sub-assembly of the coat protein, known as the 'disk'. Binding of the loop onto its specific binding site, between the two rings of the disk, leads to melting of the stem so more RNA is available to bind. The interaction of the RNA with the protein subunits in the disk cause this to dislocate into a proto-helix, rearranging the protein subunits in such a way that the axial gap between the rings at inner radii closes, entrapping the RNA. Assembly starts at an internal site on TMV RNA, about 1 kb from its 3'-terminus, and the elongation in the two directions is different. Elongation of the nucleated rods towards the 5'-terminus occurs on a 'travelling loop' of the RNA and, predominantly, still uses the disk sub-assembly of protein subunits, consequently incorporating approximately 100 further nucleotides as each disk is added, while elongation towards the 3'-terminus uses smaller protein aggregates and does not show this 'quantized' incorporation.  相似文献   

8.
The poliovirus RNA-dependent RNA polymerase was active on synthetic homopolymeric RNA templates as well as on every natural RNA tested. The polymerase copied polyadenylate. oligouridylate [oligo(U)], polycytidylate . oligoinosinate, and polyinosinate. oligocytidylate templates to about the same extent. The observed activity on polyuridylate. oligoadenylate was about fourfold less. Full-length copies of both poliovirion RNA and a wide variety of other polyadenylated RNAs were synthesized by the polymerase in the presence of oligo(U). Polymerase elongation rates on poliovirion RNA and a heterologous RNA (squash mosaic virus RNA) were about the same. Changes in the Mg(2+) concentration affected the elongation rates on both RNAs to the same extent. With two non-polyadenylated RNAs (tobacco mosaic virus RNA and brome mosaic virus RNA3), the results were different. The purified polymerase synthesized a subgenomic-sized product RNA on brome mosaic virus RNA3 in the presence of oligo(U). This product RNA appeared to initiate on oligo(U) hybridized to an internal oligoadenylate sequence in brome mosaic virus RNA3. No oligo(U)-primed product was synthesized on tobacco mosaic virus RNA. When partially purified polymerase was used in place of the completely purified enzyme, some oligo(U)-independent activity was observed on the brome mosaic virus and tobacco mosaic virus RNAs. The size of the product RNA from these reactions suggested that at least some of the product RNA was full-sized and covalently linked to the template RNA. Thus, the polymerase was found to copy many different types of RNA and to make full-length copies of the RNAs tested.  相似文献   

9.
The coat protein cistron of tobacco mosaic virus has been located on the viral RNA starting between 975 and 1050 nucleotides from the 3'-hydroxyl end. This locates its 5' end close to the origin for virus assembly, where the first protein disk interacts with RNA. It also means that the coat protein mRNA must have a short 5'-untranslated tail and a long (over 500 nucleotides) 3' one. The recovery of characteristic oligonucleotides in nuclease-protected rods during the growth from RNA and a protein disk preparation shows that elongation of the nucleated rods proceeds independently in both directions though, on average, much more rapidly along the longer 5' tail than the shorter 3' tail. Protected RNA of length equal to that in the complete virion is first seen within 6 min, showing that the most rapidly elongated particles are substantially complete by this time.  相似文献   

10.
Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3′ untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses.  相似文献   

11.
In cucumber mosaic virus infections of tobacco where disease attenuation is observed, viral RNA synthesis is quickly overtaken by the synthesis of cucumber mosaic virus-associated RNA 5, a satellite-like RNA dependent upon the virus for its replication, and that of its double-stranded form. A disease regulatory mechanism is proposed in which the sequestration of rapidly synthesized cucumber mosaic virus-associated RNA 5 molecules of complementary nucleotide sequence enables their successful competition with and suppression of, viral RNA synthesis.  相似文献   

12.
Reassembly of tobacco mosaic virus from the isolated RNA and protein, supplied as a disk preparation consisting of over 75% as the disk aggregate, has been followed by the protection of the RNA from nuclease digestion. The sizes of the RNA fragments were determined on agarose/acrylamide gels.During the first few minutes the protected RNA is found to be “quantized” into discrete lengths, differing on average by about 50 or 100 nucleotides, corresponding to one or two turns of the virus helix and strongly supporting the hypothesis that elongation in the major direction, towards the 5′-hydroxyl end, is occurring by the direct addition of protein disks. Protected RNA of the full length found in tobacco mosaic virus is visible within six minutes of starting reassembly, and by 30 minutes most of the RNA is fully protected.  相似文献   

13.
Treatment of tobacco mosaic virus (TMV) RNA with T1 RNase under mild conditions cuts the RNA molecule into a large number of fragments, only a few of which may be specifically recognized by disks of TMV protein. It has been shown elsewhere that these specifically recognized RNA fragments are a part of the coat protein cistron, the portion coding for amino acids 95 to 129 of the coat protein. It is reported that different size classes of partially uncoated virus particles were prepared by limited reconstitution between TMV RNA and protein or by partial stripping of intact virus with DMSO. Both procedures produce nucleoprotein rods in which the 5'-terminal portion of the RNA is encapsidated and the 3'-terminal region is free. The free and the encapsidated portions of the RNA were each tested for the ability to give rise to the aforesaid specifically recognized fragments of the coat protein cistron upon partial T1 RNase digestion. It was found that only the 3'-terminal third of the virus particle need to be uncoated in order to expose the portion of the RNA molecule from which these fragments are derived. We conclude, therefore, that the coat protein cistron is situated upon the 3'-terminal third of the RNA chain, i.e. within 2000 nucleotides of the 3'-end.  相似文献   

14.
Effects of temperature and ionic strength (S) on the local structure of tobacco mosaic virus RNA in phosphate buffer solution are studied by analyzing the small-angle X-ray scattering (SAXS) curves. The root-mean-square radius of a cross-section of RNA chain was kept at 0.845+/-0.005 nm over a wide range of S from 0.2 to 0.003 at 20 degrees C, whereas it gradually diminished from 0.85 to 0.61 nm when the temperature is raised from 20 to 50 degrees C at S = 0.2. Nevertheless, all of SAXS curves reflecting the backbone structures were equally mimicked by theoretical ones of freely hinged rod (FHR) models, i.e. several straight rods joined with freely hinged joints in the form of a combination of the letter Y, if the constituent rod lengths in the models are adjusted. From these facts, it is suggested that the local structure of the RNA chain in aqueous solution is characterized by an essential feature that unpaired bases in the partially double-stranded helix are constantly far isolated from each other along the helix and the rod-like structure of the helix is preserved over a range of helical contents. Such a characteristic local structure of the chain is entirely collapsed in the formamide solution at 50 degrees C.  相似文献   

15.
16.
The initial stages of the assembly of tobacco mosaic virus have been investigated by reassembling the RNA with a radioactively labelled protein disk preparation and then completing the reaction by the addition of a large excess of an unlabelled disk preparation. This gives measurements of the numbers of subunits incorporated at early times and the growth curves have been plotted.These curves have been analysed in terms of a bimolecular nucleation reaction, which is first order in the disk concentration, with a rate constant of 1.3 × 103 mol?1 s?1, and then an elongation which saturates at high protein concentrations to a maximum rate of 7.6 subunits s?1, with a Km of 0.84 mg/ml for the disk preparation.These kinetic parameters, and the predicted overall assembly curves, have been compared with data previously determined by other methods and agree closely, showing that the different experimental techniques give consistent results. The measurements are fully compatible with our earlier hypotheses Butler &; Klug 1971 that the nucleation with virus RNA and protein disks is rapid compared with the subsequent rod elongation and that this elongation can occur most rapidly directly from the protein disks. They are not compatible with the contention of some other workers that elongation cannot occur directly from disks, but only from the smaller A-protein.  相似文献   

17.
The nucleotide sequence of the satellite of arabis mosaic virus was determined using the satellite RNA encapsidated in virions. The 300-nucleotide long sequence showed extensive homology (50%) with that of the 359-nucleotide satellite RNA of tobacco ringspot virus, which occurs both in a linear and a circular form. This homology also revealed the presence of conceived sequences believed to mediate self-cleavage of the latter as well as other viral satellite RNAs. A circular form of the arabis mosaic virus satellite can be isolated from infected tissues and partially converts to the linear form upon elution from denaturing gels.  相似文献   

18.
Atomic force microscopy analysis of icosahedral virus RNA   总被引:6,自引:0,他引:6  
Single-stranded genomic RNAs from four icosahedral viruses (poliovirus, turnip yellow mosaic virus (TYMV), brome mosaic virus (BMV), and satellite tobacco mosaic virus (STMV)) along with the RNA from the helical tobacco mosaic virus (TMV) were extracted using phenol/chloroform. The RNAs were imaged using atomic force microscopy (AFM) under dynamic conditions in which the RNA was observed to unfold. RNAs from the four icosahedral viruses initially exhibited highly condensed, uniform spherical shapes with diameters consistent with those expected from the interiors of their respective capsids. Upon incubation at 26 degrees C, poliovirus RNA gradually transformed into chains of globular domains having the appearance of thick, irregularly segmented fibers. These ultimately unwound further to reveal segmented portions of the fibers connected by single strands of RNA of 0.5-1 nm thickness. Virtually the same transformations were shown by TYMV and BMV RNA, and with heating, the RNA from STMV. Upon cooling, the chains of domains of poliovirus RNA and STMV RNA condensed and re-formed their original spherical shapes. TMV RNAs initially appeared as single-stranded threads of 0.5-1.0 nm diameter but took on the structure of the multidomain chains upon further incubation at room temperature. These ultimately condensed into short, thick chains of larger domains. Our observations suggest that classical extraction of RNA from icosahedral virions produces little effect on overall conformation. As tertiary structure is lost however, it is evident that secondary structural elements are arranged in a sequential, linear fashion along the polynucleotide chain. At least in the case of poliovirus and STMV, the process of tertiary structure re-formation from the linear chain of secondary structural domains proceeds in the absence of protein. RNA base sequence, therefore, may be sufficient to encode the conformation of the encapsidated RNA even in the absence of coat proteins.  相似文献   

19.
Experiments have been carried out on the coat protein of tobacco mosaic virus (TMVP) to test for the occurrence of the previously postulated RNA-induced direct switching, during in vitro assembly of tobacco mosaic virus (TMV), of the subunit packing from the cylindrical bilayer disk to the virus helical arrangement. No evidence was found for such RNA-induced switching and no evidence for the direct participation of the bilayer disk in either the nucleation or elongation phases of the in vitro virus assembly. Instead, virus assembly proceeds by an initiation step involving the binding of the RNA to the previously characterized two-plus turn helical aggregate that is formed from small oligomers of subunits. However, a bilayer disk, which has been characterized in high ionic strength crystals, has been observed in low ionic strength virus assembly solutions only as a transient species upon depolymerization of dimers of bilayer disks formed in solution at high ionic strength, and not as an equilibrium species of TMVP.  相似文献   

20.
Summary The reconstitution process of an infectious tobacco mosaic virus particle from its RNA and protein consists of two steps, formation of the initial complex and growth of the helical rod, the former is the rate limiting step. The protein aggregate, having about 20–30 S, is needed for the formation of the initial complex with 5-end of tobacco mosaic virus RNA. The elongation reaction from the initial complex proceeds even under conditions where both the reconstitution reaction and the formation of 20–30 S protein aggregates do not take place. This indicates that the growth of the helical rod proceeds by stepwise additions of protein subunits or 4 S aggregates. A possible model for assembly process of tobacco mosaic virus particle is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号