首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wheat lines (cultivars) 'Largo', 'TAM110', 'KS89WGRC4', and 'KSU97-85-3' conferring resistance to greenbug, Schizaphis graminum (Rondani), biotypes E, I, and K were evaluated to determine the categories of resistance in each line to greenbug biotype K. Our results indicated that Largo, TAM110, KS89WGRC4, and KSU97-85-3 expressed both antibiosis and tolerance to biotype K. Largo, KS89WGRC4, and KSU97-85-3, which express antixenosis to biotype I, did not demonstrate antixenosis to biotype K. The results indicate that the same wheat lines may possess different categories of resistance to different greenbug biotypes. A new cage procedure for measuring greenbug intrinsic rate of increase (r(m)) was developed, by using both drinking straw and petri dish cages, to improve the efficiency and accuracy of r(m)-based antibiosis measurements.  相似文献   

2.
Bird cherry-oat aphid, Rhopalosiphum padi (L.), a polyphagous species with a nearly worldwide distribution, is an important pest of wheat as well as the main vector of barley yellow dwarf virus. We evaluated the resistance categories of eight wheat lines including antibiosis, antixenosis, and tolerance against R. padi under laboratory conditions. The wheat lines tested were ERWYT 88-8, ERWYT 87-6, and ERWYT 87-4 (resistant); ERWYT 87-1, ERWYT 87-20, and ERWYT 88-11 (susceptible); ERWYT 88-12 and ERWYT 88-13 (intermediate). In the antibiosis experiment, R. padi produced fewest progeny on ERWYT 88-8, ERWYT 87-6, and ERWYT 87-4 in reproduction period. In the antixenosis test, R. padi performed best on ERWYT 87-1, ERWYT 87-20, and ERWYT 88-11. Fewer apterous aphids selected ERWYT 88-8, ERWYT 87-4, and ERWYT 87-6 lines indicating antixenosis of these lines to R. padi. In tolerance experiments, however growth parameters differed between treated and untreated seedlings of wheat lines with 10 aphids per day infestation during 21-d period, but not among eight wheat lines. The plant resistance index values were greatest for ERWYT 88-8 (9.71), followed by ERWYT 87-4 (7.04) and ERWYT 87-6 (4.76). ERWYT 88-8, ERWYT 87-6, and ERWYT 87-4 may be important sources of R. padi resistance for small grain breeding and integrated pest management programs.  相似文献   

3.
Forty-one accessions of wild and cultivated wheats belonging to 19 Triticum species were tested in the field for resistance to three species of aphids, Rhopalosiphum padi Linnaeus, Sitobion avenae Fabricius and Schizaphis graminum Rondani. Antibiotic resistance was estimated by the increase in biomass of aphids over 21 days on adult plants. Overall resistance was estimated by the plant biomass lost due to aphid infestation. All three species of aphids survived and reproduced on all wheats, and reduced spike biomass compared to uninfested controls. The level of antibiosis varied among wheat species and among accessions, with accessions from three, five and one species showing antibiosis to R. padi, S. avenae and S. graminum, respectively. Overall resistance to the three aphid species was observed in five to seven accessions per aphid species. Resistance was usually specific to one aphid species. The frequency of accessions with antibiosis or overall resistance was associated with the ploidy level of the plant species. Except for overall resistance to R. padi, resistance was highest for diploid species and lowest for hexaploid species. No consistent relationship between resistance and level of domestication was detected. Accessions of the wild wheats, Triticum boeoticum Bois, Triticum tauschii (Coss.) Schmal. and Triticum araraticum Jakubz. exhibited high levels of resistance to aphids, as did Triticum monococcum L. which is derived from T. boeoticum. Nevertheless, individual susceptible or resistant accessions occurred at all levels within the evolutionary tree of wheat.  相似文献   

4.
The impact of the leaf-chlorosis-eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and the nonchlorosis-eliciting bird cherry-oat aphid, Rhopalosiphum padi (L.), feeding on D. noxia-susceptible and -resistant cereals was examined during the period (i.e., 3, 6, and 9 d after aphid infestation) that leaf chlorosis developed. After aphid number, leaf rolling and chlorosis ratings, and fresh leaf weight were recorded on each sampling date, total protein content, peroxidase, catalase, and polyphenol oxidase activities of each plant sample were determined spectrophotometrically. Although R. padi and D. noxia feeding caused significant increase of total protein content in comparison with the control cereal leaves, the difference in total protein content between R. padi and D. noxia-infested leaves was not significant. Although R. padi-feeding did not elicit any changes of peroxidase specific activity in any of the four cereals in comparison with the control leaves, D. noxia feeding elicited greater increases of peroxidase specific activity only on resistant 'Halt' wheat (Triticum aestivum L.) and susceptible 'Morex' barley (Hordeum vulgare L.), but not on susceptible 'Arapahoe' and resistant 'Border' oat (Avena sativa L.). D. noxia-feeding elicited a ninefold increase in peroxidase specific activity on Morex barley and a threefold on Halt wheat 9 d after the initial infestation in comparison with control leaves. Furthermore, D. noxia feeding did not elicit any differential changes of catalase and polyphenol oxidase activities in comparison with either R. padi feeding or control leaves. The findings suggest that D. noxia feeding probably results in oxidative stress in plants. Moderate increase of peroxidase activity (approximately threefold) in resistant Halt compared with susceptible Arapahoe wheat might have contributed to its resistance to D. noxia, whereas the ninefold peroxidase activity increase may have possibly contributed to barley's susceptibility. Different enzymatic responses in wheat, barley, and oat to D. noxia and R. padi feeding indicate the cereals have different mechanisms of aphid resistance.  相似文献   

5.
The development of superior soybean, Glycine max (L.) Merr., cultivars exhibiting resistance to insects has been hindered due to linkage drag, a common phenomenon when introgressing alleles from exotic germplasm. Simple-sequence repeat (SSR) markers were used previously to map soybean insect resistance (SIR) quantitative trait loci (QTLs) in a'Cobb' X PI 229358 population, and subsequently used to create near-isogenic lines (NILs) with SIR QTL i n a 'Benning' genetic background. SIR QTLs were mapped on linkage groups (LGs) M (SIRQTL-M), G (SIRQTL-G), and H (SIRQTL-H). The objectives of this study were to 1) evaluate linkage drag for seed yield by using Benning-derived NILs selected for SIRQTL-M, SIRQTL-H, and SIRQTL-G; 2) assess the amount of PI 229358 genome surrounding the SIR QTL in each Benning NIL; and 3) evaluate the individual effects these three QTLs on antibiosis and antixenosis to corn earworm, Helicoverpa zea (Boddie), and soybean looper, Pseudoplusia includens (Walker). Yield data collected in five environments indicated that a significant yield reduction is associated with SIRQTL-G compared with NILs without SIR QTL. Overall, there was no yield reduction associated with SIRQTL-M or SIRQTL-H. A significant antixenosis and antibiosis effect was detected for SIRQTL-M in insect feeding assays, with no effect detected in antixenosis or antibiosis assays for SIRQTL-G or SIRQTL-H without the presence of PI 229358 alleles at SIRQTL-M. These results support recent findings concerning these loci.  相似文献   

6.
Accessions from seven wild Solanum species were evaluated in the field for resistance to the Colorado potato beetle, Leptinotarsa decemlineata (Say). The multivariate insect population density data were analyzed using factor analysis. The factors extracted corresponded to relevant phases of the insect's life cycle and provided information on the mode of resistance (antixenosis and antibiosis) of the plant species. S. berthaultii, S. capsicibaccatum, S. jamesii, S. pinnatisectum, and S. trifidum demonstrated both antixenosis and antibiosis but expressed different levels of resistance. The mode of resistance of S. polyadenium seemed to be antibiosis and that of S. tarijense antixenosis. Genetic variability and heritability of insect resistance traits within accessions was trivial or inconsistent for all Solanum species studied.  相似文献   

7.
Inheritance of the two main types of the plant resistance to insects was investigated in the sorghum-greenbug (Schizaphis graminum Rond.) and wheat-bird cherry-oat aphid (Rhopalosiphon padi L.) interaction systems. The data obtained support the hypothesis that antixenosis (avoiding of the plant by the insect, given a choice) and antibiosis (adverse effect of the plant on the insect feeding on it) are pleiotropic manifestations of the same genes. This is confirmed by the following facts. (1) Identical patterns of segregation for antixenosis and antibiosis in different cases of sorghum resistance to the greenbug: monogenic control (gene Sgr4), digenic control (Sgr1, Sgr2 and Sgr7, Sgr8), and complementary action of the genes (Sgr9 and Sgr10). (2) Correlated changes in the levels of antibiosis and antixenosis during long-term reproduction of a greenbug clone on the resistant sorghum variety k-1206 (resistance controlled by one gene). (3) Simultaneous expression of antixenosis and antibiosis in F3 wheat hybrid families to the bird cherry-oat aphid.  相似文献   

8.
H13 is inherited as a major dominant resistance gene in wheat. It was previously mapped to chromosome 6DL and expresses a high level of antibiosis against Hessian fly (Hf) [Mayetiola destructor (Say)] larvae. The objective of this study was to identify tightly linked molecular markers for marker-assisted selection in wheat breeding and as a starting point toward the map-based cloning of H13. Fifty-two chromosome 6D-specific microsatellite (simple sequence repeat) markers were tested for linkage to H13 using near-isogenic lines Molly (PI 562619) and Newton-207, and a segregating population consisting of 192 F2:3 families derived from the cross PI 372129 (Dn4) × Molly (H13). Marker Xcfd132 co-segregated with H13, and several other markers were tightly linked to H13 in the distal region of wheat chromosome 6DS. Deletion analysis assigned H13 to a small region closely proximal to the breakpoint of del6DS-6 (FL 0.99). Further evaluation and comparison of the H13-linked markers revealed that the same chromosome region may also contain H23 in KS89WGRC03, an unnamed H gene (HWGRC4) in KS89WGRC04, the wheat curl mite resistance gene Cmc4, and a defense response gene Ppo for polyphenol oxidase. Thus, these genes comprise a cluster of arthropod resistance genes. Marker analysis also revealed that a very small intercalary chromosomal segment carrying H13 was transferred from the H13 donor parent to the wheat line Molly.Mention of commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

9.
Leaf rust is one of the most important diseases of wheat worldwide, particularly in the Great Plains region of the USA. One long-term strategy for the control of this disease may be through durable genetic resistance by gene pyramiding. An important step in this strategy is identifying molecular markers linked to different leaf rust-resistance genes. Here we report the molecular tagging of a leaf rust-resistance gene that may have the potential for durable resistance through further genetic manipulation and gene pyramiding. Lr39 was previously designated for a leaf rust-resistance gene introgressed from Aegilops tauschii accession TA1675 into the common wheat germplasm WGRC2. Lr40 was designated for a gene derived from Ae. tauschii accession TA1649 and is present in germplasm WGRC7. These genes are now believed to be allelic to Lr21, which was transferred to wheat from a different accession of Ae. tauschii. Molecular mapping of Lr39 and Lr40 indicates that both genes come from TA1649. WGRC2 and WRGC7 also have a similar infection type against rust culture PRTUS6. We suggest the designation of the gene in WGRC2 should be changed to Lr40. RFLP marker KSUD14 (locus Xksud14) was found 0.2-cM proximal to Lr40 in a WGRC2/Wichita F2 population (218 individuals), and co-segregated with the gene in a WGRC7/ Wichita F2 population (165 individuals). A PCR-based molecular marker developed from the sequence-tagged-site (STS) of Xksud14 was mapped to the same locus as the RFLP marker KSUD14 in both populations. KSUD14 has the structure of a resistance gene analog (RGA) including kinase2a and kinase3 domains similar to the Cre3 gene of wheat and the rust resistance gene Rp1-D of maize. When the PCR products amplified from KSU14 STS were cleaved with restriction enzyme MspI, an 885-bp fragment was found in WGRC2, WGRC7, the Lr21 near-isogenic line, and eight accessions of Ae. tauschii shown to have resistance gene alleles at the Lr21 locus. The KSUD14 PCR-based assay provides an excellent marker for Lr40 and Lr21 in diverse wheat breeding and wild Ae. tauschii populations. Received: 22 December 2000 / Accepted: 12 February 2001  相似文献   

10.
Cereal aphids are important pests of wheat, Triticum aestivum L. and Triticum durum Desf. Crop resistance is a desirable method for managing cereal aphids in central North America, where the dominant crop, spring-sown wheat, has a low value per unit area. A diploid ancestor of wheat, Triticum monococcum L., is reported to be partially resistant to Sitobion avenae (Fabricius), the most damaging cereal aphid in the region. To identify potential sources of resistance, 42 accessions of T. monococcum and three cultivated wheats were infested with aphids, seedlings for six days and adult plants for 21 days. Overall resistance was estimated by the biomass loss of foliage and spikes in relation to uninfested control plants. Antibiosis was estimated by the gain in biomass of aphids during infestation, and tolerance was estimated as a biomass conversion ratio, overall resistance divided by antibiosis. A few T. monococcum accessions exhibited partial resistance. No relationship was found between seedling and adult plant resistance: the former exhibited primarily antibiosis and the latter primarily tolerance. Two accessions with antibiosis reduced aphid biomass by 60% compared with commercial wheats. Tolerance was correlated with growth potential, and was useful only in accessions with high growth potential. Four accessions exhibited tolerance levels at least 30% greater than commercial wheats. Highly susceptible accessions also were identified, which would be useful for investigating the inheritance of antibiosis and tolerance.  相似文献   

11.
Laodelphax striatellus Fallén (Homoptera: Delphacidae), is a serious pest in rice, Oryza sativa L., production. A mapping population consisting of 81 recombinant inbred lines (RILs), derived from a cross between japonica' Kinmaze' and indica' DV85' rice, was used to detect quantitative trait loci (QTLs) for the resistance to L. striatellus. Seedbox screening test (SST), antixenosis test, and antibiosis test were used to evaluate the resistance response of the two parents and 81 RILs to L. striatellus at the seedling stage, and composite interval mapping was used for QTL analysis. When the resistance was measured by SST method, two QTLs conferring resistance to L. striatellus were mapped on chromosome 11, namely, Qsbph11a and Qsbph11b, with log of odds scores 2.51 and 4.38, respectively. The two QTLs explained 16.62 and 27.78% of the phenotypic variance in this population, respectively. In total, three QTLs controlling antixenosis against L. striatellus were detected on chromosomes 3, 4, and 11, respectively, accounting for 37.5% of the total phenotypic variance. Two QTLs expressing antibiosis to L. striatellus were mapped on chromosomes 3 and 11, respectively, explaining 25.9% of the total phenotypic variance. The identified QTL located between markers XNpb202 and C1172 on chromosome 11 was detected repeatedly by three different screening methods; therefore, it may be important to confer the resistance to L. striatellus. Once confirmed in other mapping populations, these QTLs should be useful in breeding for resistance to L. striatellus by marker-assisted selection of different resistance genes in rice varieties.  相似文献   

12.
A gene (temporarily designated Hdic) conferring resistance to the Hessian fly (Hf) [Mayetiola destructor (Say)] was previously identified from an accession of German cultivated emmer wheat [Triticum turgidum ssp. dicoccum (Schrank ex Schübler) Thell] PI 94641, and was transferred to the Hf-resistant wheat germplasm KS99WGRC42. The inheritance of Hdic resistance exhibited incomplete penetrance because phenotypes of some heterozygous progenies are fully resistant and the others are fully susceptible. Five simple sequence repeat (SSR) markers (Xgwm136,Xcfa2153, Xpsp2999,Xgwm33, and Xbarc263) were linked to the Hdic gene on the short arm of wheat chromosome 1A in the same region as the H9, H10, and H11 loci. Flanking markers Xgwm33 and Xcfa2153 were mapped at distances 0.6 cM proximal and 1.4 cM distal, respectively. Marker analysis revealed that a very small intercalary chromosomal segment containing Hdic was transferred from emmer wheat to KS99WGRC42. This is the first emmer-derived Hf-resistance gene that has been mapped and characterized. The Hdic gene confers a high level of antibiosis to biotypes GP and L, as well as to strains vH9 and vH13 of the Hf, which is different from the biotype reaction patterns of the known Hf-resistance genes on chromosome 1A (H5 and H11 susceptible to biotype L, H9 and H10 susceptible to strain vH9). These results suggested that Hdic is either a new gene or a novel allele of a known H gene on chromosome 1A. The broad spectrum of resistance conferred by the Hdic gene makes it valuable for developing Hf resistant wheat cultivars. Mention of commercial or proprietary product does not constitute an endorsement by USDA.  相似文献   

13.
A study to determine yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), was conducted during the 1997-1998 and 1998-1999 growing seasons at three eastern Colorado locations, Akron, Fort Collins, and Lamar, with three wheat lines containing either Russian wheat aphid-resistant Dn4 gene, Dn6 gene, or resistance derived from PI 222668, and TAM 107 as the susceptible control. Russian wheat aphids per tiller were greater on TAM 107 than the resistant wheat lines at the 10x infestation level at Fort Collins and Akron in 1999. Yield, seed weight, and number of seeds per spike for each wheat line were somewhat affected by Russian wheat aphid per tiller mainly at Fort Collins. The infested resistant wheat lines harbored fewer Russian wheat aphids and yielded more than the infested susceptible wheat lines. Wheat lines containing the Dn4, Dn6, and PI 222668 genes contain different levels of antibiosis or antixenosis and tolerance. Although differences existed among sites and resistance, there is a benefit to planting resistant wheat when there is a potential for Russian wheat aphid infestations.  相似文献   

14.
Greenbug, Schizaphis graminum (Rondani), is a worldwide pest of cereals including rice, sorghum, wheat, barley, etc. The relative impact of resistance modalities, including antibiosis and antixenosis, and tolerance of seven wheat cultivars and lines (three wheat cultivars, namely Kouhdasht, Bezostaya and Hirmand, and four wheat lines, namely ERWYT 87-7, ERWYT 87-8, ERWYT 87-15 and ERWYT 87-16) with different levels of resistance against S. graminum was studied under laboratory conditions in Ardabil, Iran. In the antibiosis test, S. graminum produced the most and fewest progeny on Kouhdasht and ERWYT 87-16 in the reproduction period, respectively. In the tolerance test, ERWYT 87-16 and ERWYT 87-7 had the highest tolerance against S. graminum. However, in the antixenosis test, we did not detect any significant differences among tested cultivars and lines in terms of the number of adult aphids attracted to them. Overall, the plant resistance index (PRI) values were greatest for ERWYT 87-16 (4.95) and ERWYT 87-7 (4.11) and least for Hirmand (1.11) and Kouhdasht (1.20).  相似文献   

15.
Choice and no-choice studies were conducted to determine the categories (antibiosis, antixenosis, and tolerance) of resistance of four buffalograsses (NE91-118, 'Bonnie Brae', 'Cody', and 'Tatanka') previously identified as resistant to the western chinch bug, Blissus occiduus Barber. Antibiosis studies found no significant differences in western chinch bug fecundity, nymphal development, or survival among the resistant and susceptible buffalograsses. Tolerance studies indicated that NE91-118, Cody, and Tatanka exhibited moderate-to-high levels of tolerance based on western chinch bug damage ratings and plant height, whereas Bonnie Brae exhibited moderate-to-low levels of tolerance. Choice studies indicated the presence of antixenosis in NE91-118, whereas Cody and Tatanka showed little or no antixenosis. Scanning electron microscopy was used to disclose morphological differences between NE91-118 (resistant) and '378' (susceptible). The epicuticular wax structures and trichome densities were similar between 378 and NE91-118, suggesting that morphological structures do not contribute to NE91-118 antixenosis.  相似文献   

16.
Several biotypes of the greenbug, Schizaphis graminum (Rondani), attack winter wheat, Triticum aestivum L., on the Southern Plains every year. Two wheat germplasm sources of resistance ('Largo' and 'GRS 1201') have been developed that provide protection against the three predominant greenbug biotypes (E, I, and K). Each source has agronomic and end-use quality advantages and disadvantages for the breeder to consider in choosing a greenbug-resistant breeding line. We compared these two germplasms to determine their levels of resistance against biotype E. Components of resistance (i.e., antibiosis, antixenosis, and tolerance) were measured on seedlings of GRS 1201, Largo, and 'TAM W-101' (a susceptible control). Several aphid and plant measurements (e.g., total number of aphids produced per plant, aphid selection preferences, and plant damage ratings) were recorded for each plant entry. Select data recorded for each resistance component were normalized and combined to derive a plant resistance index for each wheat entry. Results indicated that GRS 1201 had a higher level of combined resistance components than did Largo, followed by TAM W-101, the susceptible control. These data provide additional information for the breeder to consider in selecting a greenbug-resistant breeding line.  相似文献   

17.
The western chinch bug, Blissus occiduus Barber, has been documented as one of the most serious pests of buffalograss, Buchlo? dactyloides (Nuttall) Engelmann, and zoysiagrass, Zoysia japonica Steudel, grown for turf in midwestern states. Resistance to the western chinch bug has been identified in both buffalograsses and zoysiagrasses. Choice and no-choice studies were conducted to determine the categories (antibiosis, antixenosis, and tolerance) of three resistant buffalograsses (PX3-5-1', 196', and 184') and three resistant zoysiagrasses (El Toro, Emerald, and Zorro). Antibiosis studies found no significant differences in survival, nymphal development, or fecundity among the resistant and susceptible buffalograsses or zoysiagrasses, indicating that antibiosis is not an important factor in the resistance. Based on chinch bug damage ratings, 184, 196, and PX3-5-1 have comparable levels of tolerance to the known tolerant buffalograss 'Prestige', and Zorro was the most tolerant zoysiagrass. Choice studies indicated the presence of antixenosis in the buffalograss selection 196 and the zoysiagrass Emerald.  相似文献   

18.
Interspecific interactions between the symptomatic (chlorosis-eliciting) Russian wheat aphid, Diuraphis noxia (Mordvilko), and the asymptomatic (nonchlorosis-eliciting) bird cherry-oat aphid, Rhopalosiphum padi (L.), on four cereal genotypes were examined by simultaneous infestations. Four cereals (i.e., Diuraphis noxia-susceptible 'Arapahoe' wheat and 'Morex' barley, and D. noxia-resistant 'Halt' wheat and 'Border' oat) and four infestations (i.e., control, D. noxia, R. padi, and D. noxia/R. padi) were used in the research. Whereas D. noxia biomass confirmed D. noxia resistance among the cereals, R. padi biomass indicated that the D. noxia-resistant cereals did not confer R. padi resistance. D. noxia biomass was significantly lower in D. noxia/R. padi infestation than that in D. noxia infestation on all cereals, except Border oat, which indicated an antagonistic effect of R. padi on D. noxia. All aphid infestations caused a significant plant biomass reduction in comparison with the control. In comparison with D. noxia infestation, D. noxia/R. padi caused a significant plant biomass reduction on all cereals, except Morex barley. Although D. noxia biomass in D. noxia/R. padi infestation was significantly less than that in D. noxia infestation, leaf chlorophyll reduction was the same between D. noxia/R. padi and D. noxia infestations, which suggested that the asymptomatic R. padi enhanced the D. noxia-elicited leaf chlorophyll loss. The regression between chlorophyll content and aphid biomass indicated that the asymptomatic R. padi in the D. noxia/R. padi infestation enhanced chlorophyll loss, but interspecific aphid interaction on plant biomass varied among the cereals.  相似文献   

19.
Tagosodes orizicolus is one of the main plagues of rice in tropical America causing two types of damages, the direct one, feeding and oviposition effect, and an indirect one, by the transmission of the "Rice hoja blanca virus". During 2006-2007 we carried out research under greenhouse conditions at Fundaci6n Danac, Venezuela, in order to determine the mechanisms of antixenosis, antibiosis and tolerance to T. orizicolus, which could be acting in commercial varieties and advanced lines of the rice genetic breeding programs of INIA and Fundaci6n Danac. The method of free feeding was used for the antixenosis evaluation, whereas the method of forced feeding was used for antibiosis evaluation (effect on survival and oviposition). Additionally, we used the indirect method based on biomass depression to estimate the tolerance. Some of the evaluated traits included: grade of damage, number of insects settling on rice plants, percentage of sogata mortality at the mature state, number of eggs in the leaf midrib and an index of tolerance. The results showed that rice genotypes possess different combinations of resistance mechanisms, as well as different grades of reactions. The susceptible control 'Bluebonnet 50' was consistently susceptible across experiments and the resistant control 'Makalioka' had high antixenosis and high antibiosis based on survival and oviposition. The rest of the genotypes presented lower or higher degrees of antixenosis and antibiosis for survival and oviposition. The genotype 'FD0241-M-17-6-1-1-1-1' was identified with possible tolerance to the direct damage of sogata.  相似文献   

20.

Key message

A major gene conferring resistance to bacterial leaf streak was mapped to chromosome 5R in triticale.

Abstract

Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa (Xtu), is an important disease of wheat and triticale around the world. Although resistance to BLS is limited in wheat, several triticale accessions have high levels of resistance. To characterize the genetic basis of this resistance, we developed triticale mapping populations using a resistant accession (Siskiyou) and two susceptible accessions (UC38 and Villax St. Jose). Bulked segregant analysis in an F2 population derived from the cross of Siskiyou × UC38 led to the identification of a simple sequence repeat (SSR) marker (XSCM138) on chromosome 5R that co-segregated with the resistance gene. The cross of Siskiyou × Villax St. Jose was advanced into an F2:5 recombinant inbred line population and evaluated for BLS reaction. Genetic linkage maps on this population were assembled with markers generated using genotyping-by-sequencing as well as several SSR markers previously identified on 5R. Quantitative trait locus (QTL) mapping revealed a single major QTL on chromosome 5R, underlined by the same SSR marker as in the Siskiyou × UC38 population. The F1 hybrids of the two crosses were highly resistant to BLS, indicating that resistance is largely dominant. This work will facilitate introgression of this rye-derived BLS resistance gene into the wheat genome by molecular marker-mediated chromosome engineering.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号