首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Developmental gene families have diversified during land plant evolution. The primary role of YABBY gene family is promoting abaxial fate in model eudicot, Arabidopsis thaliana. However recent results suggest that roles of YABBY genes are not conserved in the angiosperms. In this paper, a rice YABBY gene was isolated, and its expression patterns were analyzed in detail. Sequence characterization and phylogenetic analyses showed the gene is OsYABBY4, which is group-classified into FIL/YAB3 subfamily. Beta-glucuronidase reporter assay and in situ analysis consistently revealed that OsYABBY4 was expressed in the meristems and developing vascular tissue of rice, predominantly in the phloem tissue, suggesting that the function of the rice gene is different from those of its counterparts in eudicots. OsYABBY4 may have been recruited to regulate the development of vasculature in rice. However, transgenic Arabidopsis plants ectopically expressing OsYABBY4 behaved very like those over-expressing FIL or YAB3 with abaxialized lateral organs, suggesting the OsYABBY4 protein domain is conserved with its Arabidopsis counterparts in sequences. Our results also indicate that the functional diversification of OsYABBY4 may be associated with the divergent spatial-temporal expression patterns, and YABBY family members may have preserved different expression regulatory systems and functions during the evolution of different kinds of species.  相似文献   

3.
4.
The YABBY (YAB) genes specify abaxial cell fate in lateral organs in Arabidopsis. Loss-of-function mutants in two early-expressing YAB genes, FILAMENTOUS FLOWER (FIL) and YAB3, do not exhibit vegetative phenotypes as a result of redundancy. Mutations in these genes result in the derepression of the KNOX homeobox genes SHOOTMERISTEMLESS (STM), BREVIPEDICELLUS, and KNAT2 in the leaves and in the partial rescue of stm mutants. Here, we show that fil yab3 double mutants exhibit ectopic meristem formation on the adaxial surfaces of cotyledons and leaf blades. We propose that in addition to abaxial specification, lateral organ development requires YAB function to downregulate KNOTTED homeobox genes so that meristem initiation and growth are restricted to the apex.  相似文献   

5.
6.
7.
8.
Ectopic expression of OsYAB1causes extra stamens and carpels in rice   总被引:1,自引:0,他引:1  
  相似文献   

9.
Plant lateral organs, such as leaves, have three primary axes of growth–proximal‐distal, medial‐‐lateral and adaxial‐abaxial (dorsal‐ventral). Although most leaves are planar, modified leaf forms, such as the bikeeled grass prophyll, can be found in nature. A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD‐ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive mutations in the maize (Zea mays) KANADI (KAN) gene milkweed pod1 (mwp1), which promotes abaxial cell identity, strongly affect development of the prophyll and silks (fused carpels). The prophyll is reduced to two unfused midribs and the silks are narrow and misshapen. Our data indicate that the prophyll and other fused organs are particularly sensitive to disruptions in adaxial‐abaxial polarity. In addition, lateral and proximal‐distal growth of most lateral organs is reduced in the mwp1‐R mutant, supporting a role for the adaxial‐abaxial boundary in promoting growth along both axes. We propose that the adaxial‐abaxial patterning mechanism has been co‐opted during evolution to generate diverse organ morphologies. genesis 48:416–423, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Members of the YABBY gene family specify abaxial cell fate in Arabidopsis.   总被引:15,自引:0,他引:15  
Lateral organs produced by shoot apical and flower meristems exhibit a fundamental abaxial-adaxial asymmetry. We describe three members of the YABBY gene family, FILAMENTOUS FLOWER, YABBY2 and YABBY3, isolated on the basis of homology to CRABS CLAW. Each of these genes is expressed in a polar manner in all lateral organ primordia produced from the apical and flower meristems. The expression of these genes is precisely correlated with abaxial cell fate in mutants in which abaxial cell fates are found ectopically, reduced or eliminated. Ectopic expression of either FILAMENTOUS FLOWER or YABBY3 is sufficient to specify the development of ectopic abaxial tissues in lateral organs. Conversely, loss of polar expression of these two genes results in a loss of polar differentiation of tissues in lateral organs. Taken together, these observations indicate that members of this gene family are responsible for the specification of abaxial cell fate in lateral organs of Arabidopsis. Furthermore, ectopic expression studies suggest that ubiquitous abaxial cell fate and maintenance of a functional apical meristem are incompatible.  相似文献   

11.
12.
13.
为发掘能源植物小桐子(Jatropha curcas)的YABBY转录因子,以最新公布的小桐子基因组序列为参考,在全基因组层面鉴定出5个亚家族的7个YABBY基因,同一亚家族的成员具有相似的氨基酸序列、基因结构和保守基序组成。YAB2和FIL/YAB3亚家族的2个旁系同源基因对(JcYAB2A/JcYAB2B、JcYAB1/JcYAB3)具有良好的共线性关系,表明片段复制或全基因组复制是小桐子YABBY家族扩张的主要方式。纯化选择是进化的主要动力,而YAB2亚家族成员可能在进化中经历了更明显的功能分化。基因表达模式和蛋白互作预测分析表明JcYAB2B和JcYAB3可能在种子的发育过程中起到重要的调控作用;同时,细胞分裂素、干旱或高盐胁迫处理抑制了大多数JcYABs成员的基因表达。此外,转录组测序结合q RT-PCR分析表明,低温处理有效诱导JcYAB2A和JcYAB2B的基因表达模式发生变化,并伴随着新的、截短的可变剪接转录本的动态积累。因此,推测JcYABs可能通过剪接体的功能竞争或功能互补参与低温响应的调节,这些结果有助于更好地了解YABBY家族成员的功能分化并阐明可变剪接如何调控...  相似文献   

14.
Shoot apical meristems (SAMs) are self-sustaining groups of cells responsible for the ordered initiation of all aerial plant tissues, including stems and lateral organs. The precise coordination of these processes argues for crosstalk between the different SAM domains. The products of YABBY (YAB) genes are limited to the organ primordium domains, which are situated at the periphery of all SAMs and which are separated by a margin of three to seven cells from the central meristem zone marked by WUSCHEL and CLAVATA3 expression. Mutations in the two related YAB1 genes, FILAMENTOUS FLOWER and YABBY3 (YAB3), cause an array of defects, including aberrant phyllotaxis. We show that peripheral YAB1 activity nonautonomously and sequentially affects the phyllotaxis and growth of subsequent primordia and coordinates the expression of SAM central zone markers. These effects support a role for YAB1 genes in short-range signaling. However, no evidence was found that YAB1 gene products are themselves mobile. A screen for suppression of a floral YAB1 overexpression phenotype revealed that the YAB1-born signals are mediated in part by the activity of LATERAL SUPPRESSOR. This GRAS protein is expressed at the boundary of organ primordia and the SAM central zone, distinct from the YAB1 expression domain. Together, these results suggest that YAB1 activity stimulates signals from the organs to the meristem via a secondary message or signal cascade, a process essential for organized growth of the SAM.  相似文献   

15.
The flower is an evolutionary innovation in angiosperms that drives the evolution of biodiversity.The carpel is integral to a flower and develops into fruits after fertilization,while the perianth,consisting of the calyx and corolla,is decorative to facilitate pollination and protect the internal organs,including the carpels and stamens.Therefore,the nature of flower origin is carpel and stamen origin,which represents one of the greatest and fundamental unresolved issues in plant evolutionary bi...  相似文献   

16.
Asymmetric development of plant lateral organs is initiated by a partitioning of organ primordia into distinct domains along their adaxial/abaxial axis. Two primary determinants of abaxial cell fate are members of the KANADI and YABBY gene families. Progressive loss of KANADI activity in loss-of-function mutants results in progressive transformation of abaxial cell types into adaxial ones and a correlated loss of lamina formation. Novel, localized planes of blade expansion occur in some kanadi loss-of-function genotypes and these ectopic lamina outgrowths are YABBY dependent. We propose that the initial asymmetric leaf development is regulated primarily by mutual antagonism between KANADI and PHB-like genes, which is translated into polar YABBY expression. Subsequently, polar YABBY expression contributes both to abaxial cell fate and to abaxial/adaxial juxtaposition-mediated lamina expansion.  相似文献   

17.
18.
Members of the YABBY gene family have a general role that promotes abaxial cell fate in a model eudicot, Arabidopsis thaliana. To understand the function of YABBY genes in monocots, we have isolated all YABBY genes in Oryza sativa (rice), and revealed the spatial and temporal expression pattern of one of these genes, OsYABBY1. In rice, eight YABBY genes constitute a small gene family and are classified into four groups according to sequence similarity, exon-intron structure, and organ-specific expression patterns. OsYABBY1 shows unique spatial expression patterns that have not previously been reported for other YABBY genes, so far. OsYABBY1 is expressed in putative precursor cells of both the mestome sheath in the large vascular bundle and the abaxial sclerenchyma in the leaves. In the flower, OsYABBY1 is specifically expressed in the palea and lemma from their inception, and is confined to several cell layers of these organs in the later developmental stages. The OsYABBY1-expressing domains are closely associated with cells that subsequently differentiate into sclerenchymatous cells. These findings suggest that the function of OsYABBY1 is involved in regulating the differentiation of a few specific cell types and is unrelated to polar regulation of lateral organ development.  相似文献   

19.
In Arabidopsis leaf primordia, the expression of HD‐Zip III, which promotes tissue differentiation on the adaxial side of the leaf primordia, is repressed by miRNA165/166 (miR165/166). Small RNAs, including miRNAs, can move from cell to cell. In this study, HD‐Zip III expression was strikingly repressed by miR165/166 in the epidermis and parenchyma cells on the abaxial side of the leaf primordia compared with those on the adaxial side. We also found that the MIR165A locus, which was expressed in the abaxial epidermis, was sufficient to establish the rigid repression pattern of HD‐Zip III expression in the leaf primordia. Ectopic expression analyses of MIR165A showed that the abaxial‐biased miR165 activity in the leaf primordia was formed neither by a polarized distribution of factors affecting miR165 activity nor by a physical boundary inhibiting the cell‐to‐cell movement of miRNA between the adaxial and abaxial sides. We revealed that cis‐acting factors, including the promoter, backbone, and mature miRNA sequence of MIR165A, are necessary for the abaxial‐biased activity of miR165 in the leaf primordia. We also found that the abaxial‐determining genes YABBYs are trans‐acting factors that are necessary for the miR165 activity pattern, resulting in the rigid determination of the adaxial–abaxial boundary in leaf primordia. Thus, we proposed a molecular mechanism in which the abaxial‐biased patterning of miR165 activity is confined.  相似文献   

20.
Sexual diversity expressed by Curcurbitaceae species is a primary example of developmental plasticity in plants. Ethylene, which promotes femaleness (carpel development), plays a key role in sex determination. We sought to determine the critical location for ethylene perception in developing floral primodia. The dominant negative Arabidopsis ethylene response mutant gene, etr1-1, was introduced into melon (Cucumis melo L.) plants under control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter, or floral-targeted Apetela3 (AP3) and Crabs Claw (CRC) promoters, which in Arabidopsis, promote expression in petal and stamen, and carpel and nectary primordia, respectively. Based on effects of exogenous ethylene, it was predicted that inhibition of ethylene perception by carpel primordia would inhibit carpel development. Constitutive expression of etr1-1 caused several phenotypes associated with ethylene insensitivity, verifying that etr1-1 inhibits ethylene perception in the heterologous melon system. Carpel-bearing bud production was essentially abolished in 35S::etr1-1 melons, providing direct demonstration of the requirement for ethylene perception for carpel development. CRC::etr1-1 plants, however, showed enhanced femaleness as manifested by earlier and increased number of carpel-bearing buds, and production of female (rather than bisexual) buds. Despite increased carpel-bearing bud formation, a greater proportion of the CRC::etr1-1 carpel-bearing buds aborted before anthesis. AP3::etr1-1 plants showed increased maleness by nearly exclusive staminate flower production, and poorly developed carpels in the rare bisexual flowers. These results indicate that ethylene perception by the stamen (or petal) primordia plays a critical role in promoting carpel development at the time of sex determination, while ethylene perception by the carpel is important for maturation of carpel-bearing flowers to anthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号