首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design of antimicrobial peptides with selective activity towards microorganisms is an important step towards the development of new antimicrobial agents. Leucine zipper sequence has been implicated in cytotoxic activity of naturally occurring antimicrobial peptides; moreover, this motif has been utilized for the design of novel antimicrobial peptides with modulated cytotoxicity. To understand further the impact of substitution of amino acids at ‘a’ and/or ‘d’ position of a leucine zipper sequence of an antimicrobial peptides on its antimicrobial and cytotoxic properties four short peptides (14-residue) were designed on the basis of a leucine zipper sequence without or with replacement of leucine residues in its ‘a’ and ‘d’ positions with d-leucine or alanine or proline residue. The original short leucine zipper peptide (SLZP) and its d-leucine substituted analog, DLSA showed comparable activity against the tested Gram-positive and negative bacteria and the fungal strains. The alanine substituted analog (ASA) though showed appreciable activity against the tested bacteria, it showed to some extent lower activity against the tested fungi. However, the proline substituted analog (PSA) showed lower activity against the tested bacterial or fungal strains. Interestingly, DLSA, ASA and PSA showed significantly lower cytotoxicity than SLZP against both human red blood cells (hRBCs) and murine 3T3 cells. Cytotoxic and bactericidal properties of these peptides matched with peptide-induced damage/permeabilization of mammalian cells and bacteria or their mimetic lipid vesicles suggesting cell membrane could be the target of these peptides. As evidenced by tryptophan fluorescence and acrylamide quenching studies the peptides showed similarities either in interaction or in their localization within the bacterial membrane mimetic negatively charged lipid vesicles. Only SLZP showed localization inside the mammalian membrane mimetic zwitterionic lipid vesicles. The results show significant scope for designing antimicrobial agents with selectivity towards microorganisms by substituting leucine residues at ‘a’ and/or ‘d’ positions of a leucine zipper sequence of an antimicrobial peptide with different amino acids.  相似文献   

2.
Melittin, a naturally occurring antimicrobial peptide, exhibits strong lytic activity against both eukaryotic and prokaryotic cells. Despite a tremendous amount of work done, very little is known about the amino acid sequence, which regulates its toxic activity. With the goal of understanding the basis of toxic activity and poor cell selectivity in melittin, a leucine zipper motif has been identified. To evaluate the possible structural and functional roles of this motif, melittin and its two analogs, after substituting the heptadic leucine by alanine, were synthesized and characterized. Functional studies indicated that alanine substitution in the leucine zipper motif resulted in a drastic reduction of the hemolytic activity of melittin. However, interestingly, both the designed analogs exhibited antibacterial activity comparable to melittin. Mutations caused a significant decrease in the membrane permeability of melittin in zwitterionic but not in negatively charged lipid vesicles. Although both the analogs exhibited similar secondary structures in the presence of negatively charged lipid vesicles as melittin, they failed to adopt a significant helical structure in the presence of zwitterionic lipid vesicles. Results suggest that the substitution of heptadic leucine by alanine impaired the assembly of melittin in an aqueous environment and its localization only in zwitterionic but not in negatively charged membrane. Altogether, the results suggest the identification of a structural element in melittin, which probably plays a prominent role in regulating its toxicity but not antibacterial activity. The results indicate that cell selectivity in some antimicrobial peptides can probably be introduced by modulating their assembly in an aqueous environment.  相似文献   

3.
Melittin (ME), a non-cell-selective antimicrobial peptide, contains the leucine zipper motif, wherein every seventh amino acid is leucine or isolucine. Here, we attempted to generate novel cell-selective peptides by substituting amino acids in the leucine zipper sequence of ME with peptoid residues. We generated a series of ME analogues by replacing Leu-6, Lue-13 and Ile-20 with Nala, Nleu, Nphe, or Nlys, and we examined their secondary structure, self-association activity, cell selectivity and mode of action. Circular dichroism spectroscopy indicated that the substitutions disrupt the α-helical structure of ME in micelles of sodium dodecyl sulfate and on negatively charged and zwitterionic phospholipid vesicles. Substitution by Nleu, Nphe, or Nlys but not Nala disturbed the self-association in an aqueous environment, interaction with zwitterionic membranes, and toxicity to mammalian cells of ME but did not affect the interaction with negatively charged membranes or antibacterial activity. Notably, peptides with Nphe or Nlys substitution had the highest therapeutic indices, consistent with their lipid selectivity. In addition, all of peptoid residue-containing ME analogues had little or no ability to induce membrane disruption, membrane depolarization and lipid flip-flop. Taken together, our studies indicate that substitution of the leucine zipper motif in ME with peptoid residues increases its selectivity against bacterial cells by impairing self-association activity and changes its mode of antibacterial action from membrane-targeting mechanism to possible intracellular targeting mechanism. Furthermore, our ME analogues especially those with Nleu, Nphe, or Nlys substitutions, may be therapeutically useful antimicrobial peptides.  相似文献   

4.
Melittin (ME), a non-cell-selective antimicrobial peptide, contains the leucine zipper motif, wherein every seventh amino acid is leucine or isolucine. Here, we attempted to generate novel cell-selective peptides by substituting amino acids in the leucine zipper sequence of ME with peptoid residues. We generated a series of ME analogues by replacing Leu-6, Lue-13 and Ile-20 with Nala, Nleu, Nphe, or Nlys, and we examined their secondary structure, self-association activity, cell selectivity and mode of action. Circular dichroism spectroscopy indicated that the substitutions disrupt the alpha-helical structure of ME in micelles of sodium dodecyl sulfate and on negatively charged and zwitterionic phospholipid vesicles. Substitution by Nleu, Nphe, or Nlys but not Nala disturbed the self-association in an aqueous environment, interaction with zwitterionic membranes, and toxicity to mammalian cells of ME but did not affect the interaction with negatively charged membranes or antibacterial activity. Notably, peptides with Nphe or Nlys substitution had the highest therapeutic indices, consistent with their lipid selectivity. In addition, all of peptoid residue-containing ME analogues had little or no ability to induce membrane disruption, membrane depolarization and lipid flip-flop. Taken together, our studies indicate that substitution of the leucine zipper motif in ME with peptoid residues increases its selectivity against bacterial cells by impairing self-association activity and changes its mode of antibacterial action from membrane-targeting mechanism to possible intracellular targeting mechanism. Furthermore, our ME analogues especially those with Nleu, Nphe, or Nlys substitutions, may be therapeutically useful antimicrobial peptides.  相似文献   

5.
The toxicity of naturally occurring or designed antimicrobial peptides is a major barrier for converting them into drugs. To synthesize antimicrobial peptides with reduced toxicity, several amphipathic peptides were designed based on the leucine zipper sequence. The first one was a leucine zipper peptide (LZP); in others, leucine residues at the a- and/or d-position were substituted with single or double alanine residues. The results showed that LZP and its analogs exhibited appreciable and similar antibacterial activity against the tested gram-positive and gram-negative bacteria. However, the substitution of alanine progressively lowered the toxicity of LZP against human red blood cells (hRBCs). The substitution of leucine with alanine impaired the binding and localization of LZP to hRBCs, but had little effect on the peptide-induced damage of Escherichia coli cells. Although LZP and its analogs exhibited similar permeability, secondary structures, and localization in negatively charged membranes, significant differences were observed among these peptides in zwitterionic membranes. The results suggest a novel approach for designing antibacterial peptides with modulation of toxicity against hRBCs by employing the leucine zipper sequence. Also, to the best of our knowledge, the results demonstrate that this sequence could be utilized to design novel cell-selective molecules for the first time.  相似文献   

6.
Hemolysin E (HlyE) is a 34 kDa protein toxin, recently isolated from a pathogenic strain of Escherichia coli, which is believed to exert its toxic activity via formation of pores in the target cell membrane. With the goal of understanding the involvement of different segments of hemolysin E in the membrane interaction and assembly of the toxin, a conserved, amphipathic leucine zipper-like motif has been identified. In order to evaluate the possible structural and functional roles of this segment in HlyE, a 30-residue peptide (H-205) corresponding to the leucine zipper motif (amino acid 205-234) and two mutant peptides of the same size were synthesized and labeled by fluorescent probes at their N termini. The results show that the wild-type H-205 binds to both zwitterionic (PC/Chol) and negatively charged (PC/PG/Chol) phospholipid vesicles and also self-assemble therein. Detailed membrane-binding experiments revealed that this synthetic motif (H-205) formed large aggregates and inserted into the bilayer of only negatively charged lipid vesicles but not of zwitterionic membrane. Although both the mutants bound to zwitterionic and negatively charged lipid vesicles, neither of them inserted into the lipid bilayers nor assembled in any of these lipid vesicles. Furthermore, H-205 adopted a significant helical structure in membrane mimetic environments and induced the permeation of monovalent ions and release of entrapped calcein across the phospholipid vesicles more efficiently than the mutant peptides. The results presented here indicate that this H-205 (amino acid 205-234) segment may be an important structural element in hemolysin E, which could play a significant role in the binding and assembly of the toxin in the target cell membrane and its destabilization.  相似文献   

7.
Although BMAP-28 is a potent cathelicidin-derived bovine antimicrobial peptide, its cytotoxic activity against the human and other mammalian cells is of concern for converting it into a novel antimicrobial drug. We have identified a short leucine and isoleucine zipper sequences at the N- and C-terminals of BMAP-28, respectively. To understand the possible role of these structural elements in BMAP-28, a number of alanine-substituted analogs were designed, synthesized and characterized along with the wild-type peptide. The substitution of amino acids at single or multiple ‘a’ position(s) of these structural motifs by alanine showed significant effects on the cytotoxic activity of the molecule on the human red blood cells (hRBCs) and 3T3 cells without showing much effects on their MIC values against the selected bacteria. BMAP-28 and all its analogs depolarized the Escherichia coli cells with almost equal efficacy. In contrast, the alanine-substituted analogs of BMAP-28 depolarized hRBCs much less efficiently than the parent molecule. Results further showed that BMAP-28 assembled appreciably onto the live E. coli and hRBC. However, the selected less toxic analogs of BMAP-28 although assembled as good as the parent molecule onto the live E. coli cells, their assembly onto the live mammalian hRBCs was much weaker as compared to that of the wild-type molecule. Looking at the remarkable similarity with the data presented in our previous work on melittin, it appears that probably the heptad repeat sequence possesses a general role in maintaining the cytotoxicity of the antimicrobial peptides against the mammalian cells and assembly therein.  相似文献   

8.
Unger T  Oren Z  Shai Y 《Biochemistry》2001,40(21):6388-6397
The amphipathic alpha-helical structure is a common motif found in membrane binding polypeptides including cell lytic peptides, antimicrobial peptides, hormones, and signal sequences. Numerous studies have been undertaken to understand the driving forces for partitioning of amphipathic alpha-helical peptides into membranes, many of them based on the antimicrobial peptide magainin 2 and the non-cell-selective cytolytic peptide melittin, as paradigms. These studies emphasized the role of linearity in their mode of action. Here we synthesized and compared the structure, biological function, and interaction with model membranes of linear and cyclic analogues of these peptides. Cyclization altered the binding of melittin and magainin analogues to phospholipid membranes. However, at similar bound peptide:lipid molar ratios, both linear and cyclic analogues preserved their high potency to permeate membranes. Furthermore, the cyclic analogues preserved approximately 75% of the helical structure of the linear peptides when bound to membranes. Biological activity studies revealed that the cyclic melittin analogue had increased antibacterial activity but decreased hemolytic activity, whereas the cyclic magainin 2 analogue had a marked decrease in both antibacterial and hemolytic activities. The results indicate that the linearity of the peptides is not essential for the disruption of the target phospholipid membrane, but rather provides the means to reach it. In addition, interfering with the coil-helix transition by cyclization, while maintaining the same sequence of hydrophobic and positively charged amino acids, allows a separated evaluation of the hydrophobic and electrostatic contributions to binding of peptides to membranes.  相似文献   

9.
All known naturally occurring linear cationic peptides adopt an amphipathic alpha-helical conformation upon binding to lipids as an initial step in the induction of cell leakage. We designed an 18-residue peptide, (KIGAKI)3-NH2, that has no amphipathic character as an alpha-helix but can form a highly amphipathic beta-sheet. When bound to lipids, (KIGAKI)3-NH2 did indeed form a beta-sheet structure as evidenced by Fourier transform infrared and circular dichroism spectroscopy. The antimicrobial activity of this peptide was compared with that of (KIAGKIA)3-NH2, and it was better than that of GMASKAGAIAGKIAKVALKAL-NH2 (PGLa) and (KLAGLAK)3-NH2, all of which form amphipathic alpha-helices when bound to membranes. (KIGAKI)3-NH2 was much less effective at inducing leakage in lipid vesicles composed of mixtures of the acidic lipid, phosphatidylglycerol, and the neutral lipid, phosphatidylcholine, as compared with the other peptides. However, when phosphatidylethanolamine replaced phosphatidylcholine, the lytic potency of PGLa and the alpha-helical model peptides was reduced, whereas that of (KIGAKI)3-NH2 was improved. Fluorescence experiments using analogs containing a single tryptophan residue showed significant differences between (KIGAKI)3-NH2 and the alpha-helical peptides in their interactions with lipid vesicles. Because the data suggest enhanced selectivity between bacterial and mammalian lipids, linear amphipathic beta-sheet peptides such as (KIGAKI)3-NH2 warrant further investigation as potential antimicrobial agents.  相似文献   

10.
Magainins are antimicrobial peptides that selectively disrupt bacterial cell membranes. In an effort to determine the propensity for oligomerization of specific highly active magainin analogues in membrane mimetic systems, we studied the structures and lipid interactions of two synthetic variants of magainins (MSI-78 and MSI-594) originally designed by Genaera Corp. Using NMR experiments on these peptides solubilized in dodecylphosphocholine (DPC) micelles, we found that the first analogue, MSI-78, forms an antiparallel dimer with a "phenylalanine zipper" holding together two highly helical protomers, whereas the second analogue, MSI-594, whose phenylalanines 12 and 16 were changed into glycine and valine, respectively, does not dimerize under our experimental conditions. In addition, magic angle spinning solid-state NMR experiments carried out on multilamellar vesicles were used to corroborate the helical conformation of the peptides found in detergent micelles and support the existence of a more compact structure for MSI-78 and a pronounced conformational heterogeneity for MSI-594. Since magainin activity is modulated by oligomerization within the membrane bilayers, this study represents a step forward in understanding the role of self-association in determining magainin function.  相似文献   

11.
Depth of bilayer penetration and effects on lipid mobility conferred by the membrane-active peptides magainin, melittin, and a hydrophobic helical sequence KKA(LA)7KK (denoted KAL), were investigated by colorimetric and time-resolved fluorescence techniques in biomimetic phospholipid/poly(diacetylene) vesicles. The experiments demonstrated that the extent of bilayer permeation and peptide localization within the membrane was dependent upon the bilayer composition, and that distinct dynamic modifications were induced by each peptide within the head-group environment of the phospholipids. Solvent relaxation, fluorescence correlation spectroscopy and fluorescence quenching analyses, employing probes at different locations within the bilayer, showed that magainin and melittin inserted close to the glycerol residues in bilayers incorporating negatively charged phospholipids, but predominant association at the lipid-water interface occurred in bilayers containing zwitterionic phospholipids. The fluorescence and colorimetric analyses also exposed the different permeation properties and distinct dynamic influence of the peptides: magainin exhibited the most pronounced interfacial attachment onto the vesicles, melittin penetrated more into the bilayers, while the KAL peptide inserted deepest into the hydrophobic core of the lipid assemblies. The solvent relaxation results suggest that decreasing the lipid fluidity might be an important initial factor contributing to the membrane activity of antimicrobial peptides.  相似文献   

12.
PEGylation is frequently used to improve the efficacy of protein and peptide drugs. Recently, we investigated its effects on the action mechanism of the cyclic beta-sheet antimicrobial peptide tachyplesin I isolated from Tachypleus tridentatus [Y. Imura, M. Nishida, Y. Ogawa, Y. Takakura, K. Matsuzaki, Action Mechanism of Tachyplesin I and Effects of PEGylation, Biochim. Biophys. Acta 1768 (2007) 1160-1169]. PEGylation did not change the basic mechanism behind the membrane-permeabilizing effect of the peptide on liposomes, however, it decreased the antimicrobial activity and cytotoxicity. To obtain further information on the effects of PEGylation on the activities of antimicrobial peptides, we designed another structurally different PEGylated antimicrobial peptide (PEG-F5W, E19Q-magainin 2-amide) based on the alpha-helical peptide magainin 2 isolated from the African clawed frog Xenopus laevis. The PEGylated peptide induced the leakage of calcein from egg yolk L-alpha-phosphatidylglycerol/egg yolk L-alpha-phosphatidylcholine large unilamellar vesicles, however, the activity was weaker than that of the control peptides. The PEGylated peptide induced lipid flip-flop coupled to the leakage and was translocated into the inner leaflet of the bilayer, indicating that PEGylation did not alter the basic mechanism of membrane permeabilization of the parent peptide. The cytotoxicity of the non-PEGylated peptides was nullified by PEGylation. At the same time, the antimicrobial activity was weakened only by 4 fold. The effects of PEGylation on the activity of magainin were compared with those for tachyplesin.  相似文献   

13.
Buforin 2 is an antimicrobial peptide discovered in the stomach tissue of the Asian toad Bufo bufo gargarizans. The 21-residue peptide with +6 net charge shows antimicrobial activity an order of magnitude higher than that of magainin 2, a membrane-permeabilizing antimicrobial peptide from Xenopus laevis [Park, C. B., Kim, M. S., and Kim, S. C. (1996) Biochem. Biophys. Res. Commun. 218, 408-413]. In this study, we investigated the interactions of buforin 2 with phospholipid bilayers in comparison with magainin 2 to obtain insight into the mechanism of action of buforin 2. Equipotent Trp-substituted peptides were used to fluorometrically monitor peptide-lipid interactions. Circular dichroism measurements showed that buforin 2 selectively bound to liposomes composed of acidic phospholipids, assuming a secondary structure similar to that in trifluoroethanol/water, which is an amphipathic helix distorted around Pro(11) with a flexible N-terminal region [Yi, G. S., Park, C. B., Kim, S. C., and Cheong, C. (1996) FEBS Lett. 398, 87-90]. Magainin 2 induced the leakage of a fluorescent dye entrapped within lipid vesicles coupled to lipid flip-flop. These results have been interpreted as the formation of a peptide-lipid supramolecular complex pore [Matsuzaki, K. (1998) Biochim. Biophys. Acta 1376, 391-400]. Buforin 2 exhibited much weaker membrane permeabilization activity despite its higher antimicrobial activity. In contrast, buforin 2 was more efficiently translocated across lipid bilayers than magainin 2. These results suggested that the ultimate target of buforin 2 is not the membrane but intracellular components. Furthermore, buforin 2 induced no lipid flip-flop, indicating that the mechanism of translocation of buforin 2 is different from that of magainin 2. The role of Pro was investigated by use of a P11A derivative of buforin 2. The derivation caused a change to magainin 2-like secondary structure and membrane behavior. Pro(11) was found to be a very important structural factor for the unique properties of buforin 2.  相似文献   

14.
The growing problem of bacterial resistance to conventional antibiotic compounds and the need for new antibiotics have stimulated interest in the development of antimicrobial peptides (AMPs) as human therapeutics. Development of topically applied agents, such as pexiganan (also known as MSI-78, an analog of the naturally occurring magainin2, extracted from the skin of the African frog Xenopus laevis) has been the focus of pharmaceutical development largely because of the relative safety of topical therapy and the uncertainty surrounding the long-term toxicology of any new class of drug administered systemically. The main hurdle that has hindered the development of antimicrobial peptides is that many of the naturally occurring peptides (such as magainin), although active in vitro, are effective in animal models of infection only at very high doses, often close to the toxic doses of the peptide, reflecting an unacceptable margin of safety. Though MSI-78 did not pass the FDA approval, it is still the best-studied AMP to date for therapeutic purposes. Biophysical studies have shown that this peptide is unstructured in solution, forms an antiparallel dimer of amphipathic helices upon binding to the membrane, and disrupts membrane via toroidal-type pore formation. This article covers functional, biophysical, biochemical and structural studies on pexiganan.  相似文献   

15.
Interactions of two antimicrobial peptides, magainin 2 and indolicidin, with three different model biomembranes, namely, monolayers, large unilamellar vesicles (LUVs), and giant liposomes, were studied. Insertion of both peptides into lipid monolayers was progressively enhanced when the content of an acidic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in a film of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) was increased. Indolicidin and magainin 2 penetrated also into lipid monolayers containing cholesterol (mole fraction, X = 0.1). Membrane association of magainin 2 attenuated lipid lateral diffusion in POPG-containing LUVs as revealed by the decrease in the excimer/monomer fluorescence ratio I(e)/I(m) for the pyrene fatty-acid-containing phospholipid derivative 1-palmitoyl-2-[10-(pyren-1-yl) decanoyl]-sn-glycero-3-phospho-rac-glycerol (PPDPG). Likewise, an increase in steady-state fluorescence anisotropy of the membrane-incorporated diphenylhexatriene (DPH) was observed, revealing magainin 2 to increase acyl chain order and induce segregation of acidic phospholipids. Similar effects were observed for indolicidin. The topological effects of magainin 2 and indolicidin on phospholipid membranes were investigated using optical microscopy of giant vesicles. Magainin 2 had essentially no influence on either SOPC or SOPC:cholesterol (X = 0.1) giant liposomes. However, effective vesiculation was observed when acidic phospholipid (X(PG) = 0.1) was included in the giant vesicles. Indolicidin caused only a minor shrinkage of giant SOPC vesicles whereas the formation of endocytotic vesicles was observed when the giant liposome contained POPG (X(PG) = 0.1). Interestingly, for indolicidin, vesiculation was also observed for giant vesicles composed of SOPC/cholesterol (X(chol) = 0.1). Possible mechanisms of membrane transformation induced by these two peptides are discussed.  相似文献   

16.
PEGylation is frequently used to improve the efficacy of protein and peptide drugs. Recently, we investigated its effects on the action mechanism of the cyclic β-sheet antimicrobial peptide tachyplesin I isolated from Tachypleus tridentatus [Y. Imura, M. Nishida, Y. Ogawa, Y. Takakura, K. Matsuzaki, Action Mechanism of Tachyplesin I and Effects of PEGylation, Biochim. Biophys. Acta 1768 (2007) 1160-1169]. PEGylation did not change the basic mechanism behind the membrane-permeabilizing effect of the peptide on liposomes, however, it decreased the antimicrobial activity and cytotoxicity. To obtain further information on the effects of PEGylation on the activities of antimicrobial peptides, we designed another structurally different PEGylated antimicrobial peptide (PEG-F5W, E19Q-magainin 2-amide) based on the α-helical peptide magainin 2 isolated from the African clawed frog Xenopus laevis. The PEGylated peptide induced the leakage of calcein from egg yolk l-α-phosphatidylglycerol/egg yolk l-α-phosphatidylcholine large unilamellar vesicles, however, the activity was weaker than that of the control peptides. The PEGylated peptide induced lipid flip-flop coupled to the leakage and was translocated into the inner leaflet of the bilayer, indicating that PEGylation did not alter the basic mechanism of membrane permeabilization of the parent peptide. The cytotoxicity of the non-PEGylated peptides was nullified by PEGylation. At the same time, the antimicrobial activity was weakened only by 4 fold. The effects of PEGylation on the activity of magainin were compared with those for tachyplesin.  相似文献   

17.
Antimicrobial peptides are widely distributed in nature and appear to play a role in the host defense of plants and animals. In this study we report the existence of antimicrobial peptides in the stomach of the vertebrate Xenopus laevis, an animal previously shown to store high concentrations of antimicrobial peptides in its skin. Antimicrobial activity was detected in extracts of X. laevis stomach tissue and nine antimicrobial peptides were then purified. A novel 24-amino acid peptide, designated PGQ, was isolated from these extracts, and has the following amino acid sequence: GVLSNVIGYLKKLGTGALNAVLKQ. PGQ is relatively basic and has the potential to form an amphipathic alpha-helix. The other peptides isolated are members of the magainin family of antimicrobial peptides, and include magainins I and II, PGLa, xenopsin precursor fragment, and four caerulein precursor fragments. None of these peptides had been previously identified in tissues other than the skin. The purification of the peptides from stomach extracts and subsequent protein sequence analysis reveals that the peptides have undergone the same processing as their dermal counterparts, and that they are stored in their processed forms. Northern blot analysis indicates that the magainin family of peptides are synthesized in the stomach, and immunohistochemical studies demonstrate that magainin is stored in a novel granular multinucleated cell in the gastric mucosa of Xenopus. This study demonstrates that the magainin family of antimicrobial peptides is found in the gastrointestinal system of X. laevis and offers an opportunity to further define the physiological role of these defense peptides.  相似文献   

18.
19.
According to their distinct biological functions, membrane-active peptides are generally classified as antimicrobial (AMP), cell-penetrating (CPP), or fusion peptides (FP). The former two classes are known to have some structural and physicochemical similarities, but fusogenic peptides tend to have rather different features and sequences. Nevertheless, we found that many CPPs and some AMPs exhibit a pronounced fusogenic activity, as measured by a lipid mixing assay with vesicles composed of typical eukaryotic lipids. Compared to the HIV fusion peptide (FP23) as a representative standard, all designer-made peptides showed much higher lipid-mixing activities (MSI-103, MAP, transportan, penetratin, Pep1). Native sequences, on the other hand, were less fusogenic (magainin 2, PGLa, gramicidin S), and pre-aggregated ones were inactive (alamethicin, SAP). The peptide structures were characterized by circular dichroism before and after interacting with the lipid vesicles. A striking correlation between the extent of conformational change and the respective fusion activities was found for the series of peptides investigated here. At the same time, the CD data show that lipid mixing can be triggered by any type of conformation acquired upon binding, whether α-helical, β-stranded, or other. These observations suggest that lipid vesicle fusion can simply be driven by the energy released upon membrane binding, peptide folding, and possibly further aggregation. This comparative study of AMPs, CPPs, and FPs emphasizes the multifunctional aspects of membrane-active peptides, and it suggests that the origin of a peptide (native sequence or designer-made) may be more relevant to define its functional range than any given name.  相似文献   

20.
Antimicrobial peptides (AMPs) are naturally occurring components of the immune system that act against bacteria in a variety of organisms throughout the evolutionary hierarchy. There have been many studies focused on the activity of AMPs using biophysical and microbiological techniques; however, a clear and predictive mechanism toward determining if a peptide will exhibit antimicrobial activity is still elusive, in addition to the fact that the mechanism of action of AMPs has been shown to vary between peptides, targets, and experimental conditions. Nonetheless, the majority of AMPs contain hydrophobic amino acids to facilitate partitioning into bacterial membranes and a net cationic charge to promote selective binding to the anionic surfaces of bacteria over the zwitterionic host cell surfaces. This study explores the role of hydrophobic amino acids using the peptide C18G as a model system. These changes were evaluated for the effects on antimicrobial activity, peptide-lipid interactions using Trp fluorescence spectroscopy, peptide secondary structure formation, and bacterial membrane permeabilization. The results show that while secondary structure formation was not significantly impacted by the substitutions, antibacterial activity and binding to model lipid membranes were well correlated. The variants containing Leu or Phe as the sole hydrophobic groups bound bilayers with highest affinity and were most effective at inhibiting bacterial growth. Peptides with Ile exhibited intermediate behavior while those with Val or α-aminoisobutyric acid (Aib) showed poor binding and activity. The Leu, Phe, and Ile peptides demonstrated a clear preference for anionic bilayers, exhibiting significant emission spectrum shifts upon binding. Similarly, the Leu, Phe, and Ile peptides demonstrated greater ability to disrupt lipid vesicles and bacterial membranes. In total, the data indicate that hydrophobic moieties in the AMP sequence play a significant role in the binding and ability of the peptide to exhibit antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号